{"title":"含氧环化合物的催化转化。第一部分:H[Al]ZSM-5和H[B]ZSM-5上环己醇的转化","authors":"Libor Brabec, Jana Nováková, Ludmila Kubelková","doi":"10.1016/0304-5102(94)87033-0","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclohexanol (CHL) conversion was measured under low-pressure on-stream conditions on HZSM-5 zeolites and on H-boralite using small amounts of catalysts. Catalytic runs were followed by TPD of the surface species, which also were studied using FTIR spectroscopy. It was found that the individual reaction steps, low-temperature dehydration (yielding cyclohexene), skeletal isomerization (ring contraction to methylcyclopentene) and reactions involving H-transfer (formation of methylcyclopentane, substituted aromatics and simple olefins) were conditioned by the presence of strong acid sites whose number needed for these reactions increased from the dehydration to the H-transfer reactions. The CHL reaction was compared with the reactions of cyclohexene, and the effect of Lewis acid sites present in some cases together with the Brønsted sites was discussed. Ammonia was found to block the active centers, reduce the isomerization and especially the reactions involving H-transfer. Contrary to ammonia, methanol reacted with the CHL surface complexes yielding more substituted aromatics and more olefins than CHL or methanol alone (and/or simple sum of CHL and methanol products).</p></div>","PeriodicalId":16567,"journal":{"name":"分子催化","volume":"94 1","pages":"Pages 117-130"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-5102(94)87033-0","citationCount":"18","resultStr":"{\"title\":\"Catalytic conversion of oxygen containing cyclic compounds. Part I. Cyclohexanol conversion over H[Al]ZSM-5 and H[B]ZSM-5\",\"authors\":\"Libor Brabec, Jana Nováková, Ludmila Kubelková\",\"doi\":\"10.1016/0304-5102(94)87033-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cyclohexanol (CHL) conversion was measured under low-pressure on-stream conditions on HZSM-5 zeolites and on H-boralite using small amounts of catalysts. Catalytic runs were followed by TPD of the surface species, which also were studied using FTIR spectroscopy. It was found that the individual reaction steps, low-temperature dehydration (yielding cyclohexene), skeletal isomerization (ring contraction to methylcyclopentene) and reactions involving H-transfer (formation of methylcyclopentane, substituted aromatics and simple olefins) were conditioned by the presence of strong acid sites whose number needed for these reactions increased from the dehydration to the H-transfer reactions. The CHL reaction was compared with the reactions of cyclohexene, and the effect of Lewis acid sites present in some cases together with the Brønsted sites was discussed. Ammonia was found to block the active centers, reduce the isomerization and especially the reactions involving H-transfer. Contrary to ammonia, methanol reacted with the CHL surface complexes yielding more substituted aromatics and more olefins than CHL or methanol alone (and/or simple sum of CHL and methanol products).</p></div>\",\"PeriodicalId\":16567,\"journal\":{\"name\":\"分子催化\",\"volume\":\"94 1\",\"pages\":\"Pages 117-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0304-5102(94)87033-0\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"分子催化\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0304510294870330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"分子催化","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304510294870330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
Catalytic conversion of oxygen containing cyclic compounds. Part I. Cyclohexanol conversion over H[Al]ZSM-5 and H[B]ZSM-5
Cyclohexanol (CHL) conversion was measured under low-pressure on-stream conditions on HZSM-5 zeolites and on H-boralite using small amounts of catalysts. Catalytic runs were followed by TPD of the surface species, which also were studied using FTIR spectroscopy. It was found that the individual reaction steps, low-temperature dehydration (yielding cyclohexene), skeletal isomerization (ring contraction to methylcyclopentene) and reactions involving H-transfer (formation of methylcyclopentane, substituted aromatics and simple olefins) were conditioned by the presence of strong acid sites whose number needed for these reactions increased from the dehydration to the H-transfer reactions. The CHL reaction was compared with the reactions of cyclohexene, and the effect of Lewis acid sites present in some cases together with the Brønsted sites was discussed. Ammonia was found to block the active centers, reduce the isomerization and especially the reactions involving H-transfer. Contrary to ammonia, methanol reacted with the CHL surface complexes yielding more substituted aromatics and more olefins than CHL or methanol alone (and/or simple sum of CHL and methanol products).
期刊介绍:
Journal of Molecular Catalysis (China) is a bimonthly journal, founded in 1987. It is a bimonthly journal, founded in 1987, sponsored by Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, under the supervision of Chinese Academy of Sciences, and published by Science Publishing House, which is a scholarly journal openly circulated both at home and abroad. The journal mainly reports the latest progress and research results on molecular catalysis. It contains academic papers, research briefs, research reports and progress reviews. The content focuses on coordination catalysis, enzyme catalysis, light-ribbed catalysis, stereochemistry in catalysis, catalytic reaction mechanism and kinetics, the study of catalyst surface states and the application of quantum chemistry in catalysis. We also provide contributions on the activation, deactivation and regeneration of homogeneous catalysts, solidified homogeneous catalysts and solidified enzyme catalysts in industrial catalytic processes, as well as on the optimisation and characterisation of catalysts for new catalytic processes.
The main target readers are scientists and postgraduates working in catalysis in research institutes, industrial and mining enterprises, as well as teachers and students of chemistry and chemical engineering departments in colleges and universities. Contributions from related professionals are welcome.