C. K. Enenebeaku, I. Ukaga, N. J. Okorocha, B. Onyeachu
{"title":"马铃薯皮粉对甲基紫的吸附、平衡及动力学研究","authors":"C. K. Enenebeaku, I. Ukaga, N. J. Okorocha, B. Onyeachu","doi":"10.18052/WWW.SCIPRESS.COM/ILCPA.80.17","DOIUrl":null,"url":null,"abstract":"The adsorption of methyl violet (MV) dye onto white potato Peel powder from aqueous solution was investigated by analyzing the operational parameters such as contact time, adsorbent dosage, initial dye concentration, PH and temperature to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MV onto the adsorbent (WPPP) was found to be contact time (120 mins), PH (10.0) and temperature (303K) for an initial MV dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MV) dye fitted best and well to the freundlich isotherm model. The maximum adsorption capacity was found to be 17.13mg/g for the adsorption of MV. The kinetic data conforms to the pseudo – second order kinetic model.","PeriodicalId":14453,"journal":{"name":"International Letters of Chemistry, Physics and Astronomy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adsorption, Equilibrium and Kinetic Studies of the Removal of Methyl Violet from Aqueous Solution Using White Potato Peel Powder\",\"authors\":\"C. K. Enenebeaku, I. Ukaga, N. J. Okorocha, B. Onyeachu\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/ILCPA.80.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adsorption of methyl violet (MV) dye onto white potato Peel powder from aqueous solution was investigated by analyzing the operational parameters such as contact time, adsorbent dosage, initial dye concentration, PH and temperature to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MV onto the adsorbent (WPPP) was found to be contact time (120 mins), PH (10.0) and temperature (303K) for an initial MV dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MV) dye fitted best and well to the freundlich isotherm model. The maximum adsorption capacity was found to be 17.13mg/g for the adsorption of MV. The kinetic data conforms to the pseudo – second order kinetic model.\",\"PeriodicalId\":14453,\"journal\":{\"name\":\"International Letters of Chemistry, Physics and Astronomy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Letters of Chemistry, Physics and Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILCPA.80.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Letters of Chemistry, Physics and Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILCPA.80.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adsorption, Equilibrium and Kinetic Studies of the Removal of Methyl Violet from Aqueous Solution Using White Potato Peel Powder
The adsorption of methyl violet (MV) dye onto white potato Peel powder from aqueous solution was investigated by analyzing the operational parameters such as contact time, adsorbent dosage, initial dye concentration, PH and temperature to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MV onto the adsorbent (WPPP) was found to be contact time (120 mins), PH (10.0) and temperature (303K) for an initial MV dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MV) dye fitted best and well to the freundlich isotherm model. The maximum adsorption capacity was found to be 17.13mg/g for the adsorption of MV. The kinetic data conforms to the pseudo – second order kinetic model.