对偶主成分追踪与正交字典学习的流形近点算法

Shixiang Chen, Zengde Deng, Shiqian Ma, A. M. So
{"title":"对偶主成分追踪与正交字典学习的流形近点算法","authors":"Shixiang Chen, Zengde Deng, Shiqian Ma, A. M. So","doi":"10.1109/IEEECONF44664.2019.9048840","DOIUrl":null,"url":null,"abstract":"Dual principal component pursuit and orthogonal dictionary learning are two fundamental tools in data analysis, and both of them can be formulated as a manifold optimization problem with nonsmooth objective. Algorithms with convergence guarantees for solving this kind of problems have been very limited in the literature. In this paper, we propose a novel manifold proximal point algorithm for solving this nonsmooth manifold optimization problem. Numerical results are reported to demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"204 1","pages":"259-263"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Manifold Proximal Point Algorithms for Dual Principal Component Pursuit and Orthogonal Dictionary Learning\",\"authors\":\"Shixiang Chen, Zengde Deng, Shiqian Ma, A. M. So\",\"doi\":\"10.1109/IEEECONF44664.2019.9048840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual principal component pursuit and orthogonal dictionary learning are two fundamental tools in data analysis, and both of them can be formulated as a manifold optimization problem with nonsmooth objective. Algorithms with convergence guarantees for solving this kind of problems have been very limited in the literature. In this paper, we propose a novel manifold proximal point algorithm for solving this nonsmooth manifold optimization problem. Numerical results are reported to demonstrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"204 1\",\"pages\":\"259-263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

对偶主成分寻优和正交字典学习是数据分析的两个基本工具,它们都可以表述为具有非光滑目标的流形优化问题。在文献中,解决这类问题的收敛保证算法非常有限。本文提出了一种新的流形近点算法来解决这一非光滑流形优化问题。数值结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifold Proximal Point Algorithms for Dual Principal Component Pursuit and Orthogonal Dictionary Learning
Dual principal component pursuit and orthogonal dictionary learning are two fundamental tools in data analysis, and both of them can be formulated as a manifold optimization problem with nonsmooth objective. Algorithms with convergence guarantees for solving this kind of problems have been very limited in the literature. In this paper, we propose a novel manifold proximal point algorithm for solving this nonsmooth manifold optimization problem. Numerical results are reported to demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信