在线索引词预测使用双词关联

Jon T. Rickman, H. W. Gardner
{"title":"在线索引词预测使用双词关联","authors":"Jon T. Rickman, H. W. Gardner","doi":"10.1145/800192.805715","DOIUrl":null,"url":null,"abstract":"Predicting index terms (or keywords) by examining a word's component letter strings is investigated. The weights or string-term associations for the letter strings are determined by using relative frequencies computed from a representative sample of the total abstract (or document) collection. The experimental results indicate that the terms predicted by using bigrams (letter pairs) are effectively the same as those predicted by using bigrams and longer letter strings.","PeriodicalId":72321,"journal":{"name":"ASSETS. Annual ACM Conference on Assistive Technologies","volume":"56 1","pages":"262-270"},"PeriodicalIF":0.0000,"publicationDate":"1973-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On-line index term predictions using bigram-term associations\",\"authors\":\"Jon T. Rickman, H. W. Gardner\",\"doi\":\"10.1145/800192.805715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting index terms (or keywords) by examining a word's component letter strings is investigated. The weights or string-term associations for the letter strings are determined by using relative frequencies computed from a representative sample of the total abstract (or document) collection. The experimental results indicate that the terms predicted by using bigrams (letter pairs) are effectively the same as those predicted by using bigrams and longer letter strings.\",\"PeriodicalId\":72321,\"journal\":{\"name\":\"ASSETS. Annual ACM Conference on Assistive Technologies\",\"volume\":\"56 1\",\"pages\":\"262-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASSETS. Annual ACM Conference on Assistive Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800192.805715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASSETS. Annual ACM Conference on Assistive Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800192.805715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了通过检查单词的组成字母字符串来预测索引项(或关键字)。字母字符串的权重或字符串-术语关联是通过使用从总摘要(或文档)集合的代表性样本计算的相对频率来确定的。实验结果表明,使用双字符(字母对)预测的词与使用双字符和更长的字母串预测的词是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line index term predictions using bigram-term associations
Predicting index terms (or keywords) by examining a word's component letter strings is investigated. The weights or string-term associations for the letter strings are determined by using relative frequencies computed from a representative sample of the total abstract (or document) collection. The experimental results indicate that the terms predicted by using bigrams (letter pairs) are effectively the same as those predicted by using bigrams and longer letter strings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信