{"title":"基于SeqGAN和GPT-2的印尼语潘顿语诗歌生成","authors":"Emmanuella Anggi Siallagan, Ika Alfina","doi":"10.21609/jiki.v16i1.1113","DOIUrl":null,"url":null,"abstract":"Pantun is a traditional Malay poem consisting of four lines: two lines of deliverance and two lines of messages. Each ending-line word in pantun forms an ABAB rhyme pattern. In this work, we automatically generated Indonesian pantun by applying two existing generative models: Sequential GAN (SeqGAN) and Generative Pre-trained Transformer 2 (GPT-2). We also created a 13K Indonesian pantun dataset by collecting pantun from various sources. We evaluated how well each model produced pantun by its formedness. Measured by two aspects: structure and rhyme. GPT-2 performs better with a margin of 27.57% than SeqGAN in forming the structure and 22.79% better in making rhyming patterns.","PeriodicalId":31392,"journal":{"name":"Jurnal Ilmu Komputer dan Informasi","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poetry Generation for Indonesian Pantun Using SeqGAN and GPT-2\",\"authors\":\"Emmanuella Anggi Siallagan, Ika Alfina\",\"doi\":\"10.21609/jiki.v16i1.1113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pantun is a traditional Malay poem consisting of four lines: two lines of deliverance and two lines of messages. Each ending-line word in pantun forms an ABAB rhyme pattern. In this work, we automatically generated Indonesian pantun by applying two existing generative models: Sequential GAN (SeqGAN) and Generative Pre-trained Transformer 2 (GPT-2). We also created a 13K Indonesian pantun dataset by collecting pantun from various sources. We evaluated how well each model produced pantun by its formedness. Measured by two aspects: structure and rhyme. GPT-2 performs better with a margin of 27.57% than SeqGAN in forming the structure and 22.79% better in making rhyming patterns.\",\"PeriodicalId\":31392,\"journal\":{\"name\":\"Jurnal Ilmu Komputer dan Informasi\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmu Komputer dan Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21609/jiki.v16i1.1113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmu Komputer dan Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21609/jiki.v16i1.1113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poetry Generation for Indonesian Pantun Using SeqGAN and GPT-2
Pantun is a traditional Malay poem consisting of four lines: two lines of deliverance and two lines of messages. Each ending-line word in pantun forms an ABAB rhyme pattern. In this work, we automatically generated Indonesian pantun by applying two existing generative models: Sequential GAN (SeqGAN) and Generative Pre-trained Transformer 2 (GPT-2). We also created a 13K Indonesian pantun dataset by collecting pantun from various sources. We evaluated how well each model produced pantun by its formedness. Measured by two aspects: structure and rhyme. GPT-2 performs better with a margin of 27.57% than SeqGAN in forming the structure and 22.79% better in making rhyming patterns.