双矩阵对策的有效分解(扩展摘要)

Hkhmt m`Sr Pub Date : 2014-04-01 DOI:10.4204/EPTCS.146.10
Xiang Jiang, A. Pauly
{"title":"双矩阵对策的有效分解(扩展摘要)","authors":"Xiang Jiang, A. Pauly","doi":"10.4204/EPTCS.146.10","DOIUrl":null,"url":null,"abstract":"Exploiting the algebraic structure of the set of bimatrix games, a divide-and-conquer algorithm for finding Nash equilibria is proposed. The algorithm is fixed-parameter tractable with the size of the largest irreducible component of a game as parameter. An implementation of the algorithm is shown to yield a significant performance increase on inputs with small parameters.","PeriodicalId":53035,"journal":{"name":"Hkhmt m`Sr","volume":"39 1","pages":"75-81"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient Decomposition of Bimatrix Games (Extended Abstract)\",\"authors\":\"Xiang Jiang, A. Pauly\",\"doi\":\"10.4204/EPTCS.146.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting the algebraic structure of the set of bimatrix games, a divide-and-conquer algorithm for finding Nash equilibria is proposed. The algorithm is fixed-parameter tractable with the size of the largest irreducible component of a game as parameter. An implementation of the algorithm is shown to yield a significant performance increase on inputs with small parameters.\",\"PeriodicalId\":53035,\"journal\":{\"name\":\"Hkhmt m`Sr\",\"volume\":\"39 1\",\"pages\":\"75-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hkhmt m`Sr\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.146.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hkhmt m`Sr","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.146.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用双矩阵对策集的代数结构,提出了一种求解纳什均衡的分治算法。该算法以博弈中最大不可约分量的大小为参数,具有定参数可处理性。该算法的一个实现在具有小参数的输入上产生了显著的性能提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Decomposition of Bimatrix Games (Extended Abstract)
Exploiting the algebraic structure of the set of bimatrix games, a divide-and-conquer algorithm for finding Nash equilibria is proposed. The algorithm is fixed-parameter tractable with the size of the largest irreducible component of a game as parameter. An implementation of the algorithm is shown to yield a significant performance increase on inputs with small parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信