高可变负载下多电压频岛多处理器平台电源管理的最优控制方法

P. Bogdan, R. Marculescu, Siddhartha Jain, Rafael Tornero Gavilá
{"title":"高可变负载下多电压频岛多处理器平台电源管理的最优控制方法","authors":"P. Bogdan, R. Marculescu, Siddhartha Jain, Rafael Tornero Gavilá","doi":"10.1109/NOCS.2012.32","DOIUrl":null,"url":null,"abstract":"Reducing energy consumption in multi-processor systems-on-chip (MPSoCs) where communication happens via the network-on-chip (NoC) approach calls for multiple voltage/frequency island (VFI)-based designs. In turn, such multi-VFI architectures need efficient, robust, and accurate run-time control mechanisms that can exploit the workload characteristics in order to save power. Despite being tractable, the linear control models for power management cannot capture some important workload characteristics (e.g., fractality, non-stationarity) observed in heterogeneous NoCs, if ignored, such characteristics lead to inefficient communication and resources allocation, as well as high power dissipation in MPSoCs. To mitigate such limitations, we propose a new paradigm shift from power optimization based on linear models to control approaches based on fractal-state equations. As such, our approach is the first to propose a controller for fractal workloads with precise constraints on state and control variables and specific time bounds. Our results show that significant power savings (about 70%) can be achieved at run-time while running a variety of benchmark applications.","PeriodicalId":6333,"journal":{"name":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","volume":"14 1","pages":"35-42"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"An Optimal Control Approach to Power Management for Multi-Voltage and Frequency Islands Multiprocessor Platforms under Highly Variable Workloads\",\"authors\":\"P. Bogdan, R. Marculescu, Siddhartha Jain, Rafael Tornero Gavilá\",\"doi\":\"10.1109/NOCS.2012.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing energy consumption in multi-processor systems-on-chip (MPSoCs) where communication happens via the network-on-chip (NoC) approach calls for multiple voltage/frequency island (VFI)-based designs. In turn, such multi-VFI architectures need efficient, robust, and accurate run-time control mechanisms that can exploit the workload characteristics in order to save power. Despite being tractable, the linear control models for power management cannot capture some important workload characteristics (e.g., fractality, non-stationarity) observed in heterogeneous NoCs, if ignored, such characteristics lead to inefficient communication and resources allocation, as well as high power dissipation in MPSoCs. To mitigate such limitations, we propose a new paradigm shift from power optimization based on linear models to control approaches based on fractal-state equations. As such, our approach is the first to propose a controller for fractal workloads with precise constraints on state and control variables and specific time bounds. Our results show that significant power savings (about 70%) can be achieved at run-time while running a variety of benchmark applications.\",\"PeriodicalId\":6333,\"journal\":{\"name\":\"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip\",\"volume\":\"14 1\",\"pages\":\"35-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOCS.2012.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOCS.2012.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

在通过片上网络(NoC)进行通信的多处理器片上系统(mpsoc)中,为了降低能耗,需要采用基于多个电压/频率岛(VFI)的设计。反过来,这种多vfi架构需要高效、健壮和准确的运行时控制机制,这些机制可以利用工作负载特性来节省电力。尽管易于处理,但用于电源管理的线性控制模型无法捕捉到异构noc中观察到的一些重要工作负载特征(例如分形、非平稳性),如果忽略这些特征,则会导致mpsoc中的低效通信和资源分配,以及高功耗。为了减轻这些限制,我们提出了一种新的范式转变,从基于线性模型的功率优化到基于分形状态方程的控制方法。因此,我们的方法是第一个提出分形工作负载的控制器,具有对状态和控制变量以及特定时间界限的精确约束。我们的结果表明,在运行各种基准测试应用程序时,可以实现显著的节能(约70%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal Control Approach to Power Management for Multi-Voltage and Frequency Islands Multiprocessor Platforms under Highly Variable Workloads
Reducing energy consumption in multi-processor systems-on-chip (MPSoCs) where communication happens via the network-on-chip (NoC) approach calls for multiple voltage/frequency island (VFI)-based designs. In turn, such multi-VFI architectures need efficient, robust, and accurate run-time control mechanisms that can exploit the workload characteristics in order to save power. Despite being tractable, the linear control models for power management cannot capture some important workload characteristics (e.g., fractality, non-stationarity) observed in heterogeneous NoCs, if ignored, such characteristics lead to inefficient communication and resources allocation, as well as high power dissipation in MPSoCs. To mitigate such limitations, we propose a new paradigm shift from power optimization based on linear models to control approaches based on fractal-state equations. As such, our approach is the first to propose a controller for fractal workloads with precise constraints on state and control variables and specific time bounds. Our results show that significant power savings (about 70%) can be achieved at run-time while running a variety of benchmark applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信