{"title":"关系数据库中的来源和概率","authors":"P. Senellart","doi":"10.1145/3186549.3186551","DOIUrl":null,"url":null,"abstract":"We review the basics of data provenance in relational databases. We describe different provenance formalisms, from Boolean provenance to provenance semirings and beyond, that can be used for a wide variety of purposes, to obtain additional information on the output of a query. We discuss representation systems for data provenance, circuits in particular, with a focus on practical implementation. Finally, we explain how provenance is practically used for probabilistic query evaluation in probabilistic databases.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"39 1","pages":"5-15"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Provenance and Probabilities in Relational Databases\",\"authors\":\"P. Senellart\",\"doi\":\"10.1145/3186549.3186551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review the basics of data provenance in relational databases. We describe different provenance formalisms, from Boolean provenance to provenance semirings and beyond, that can be used for a wide variety of purposes, to obtain additional information on the output of a query. We discuss representation systems for data provenance, circuits in particular, with a focus on practical implementation. Finally, we explain how provenance is practically used for probabilistic query evaluation in probabilistic databases.\",\"PeriodicalId\":21740,\"journal\":{\"name\":\"SIGMOD Rec.\",\"volume\":\"39 1\",\"pages\":\"5-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGMOD Rec.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3186549.3186551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3186549.3186551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Provenance and Probabilities in Relational Databases
We review the basics of data provenance in relational databases. We describe different provenance formalisms, from Boolean provenance to provenance semirings and beyond, that can be used for a wide variety of purposes, to obtain additional information on the output of a query. We discuss representation systems for data provenance, circuits in particular, with a focus on practical implementation. Finally, we explain how provenance is practically used for probabilistic query evaluation in probabilistic databases.