R. Brodie, B. Roberts, Jessica I. Espinosa, K. Heilman, Stephen A. Borgianini, J. Welch, K. A. Reinsel
{"title":"土招蟹能量储备的季节和纬度变化:对气候变化的响应","authors":"R. Brodie, B. Roberts, Jessica I. Espinosa, K. Heilman, Stephen A. Borgianini, J. Welch, K. A. Reinsel","doi":"10.3354/AB00683","DOIUrl":null,"url":null,"abstract":"In 2014, the Atlantic mud fiddler crab Uca pugnax was found 80 km north of its previously known northern range limit. Two years before this shift was noted, we collected a total of 781 male and female specimens from 6 populations along a latitudinal transect extending from Wareham, Massachusetts (41.7615° N), to Tybee Island, Georgia (32.0139° N), USA. By assessing latitudinal and seasonal patterns in the hepatosomatic index (HSI; a measure of stored energy) and the reproductive status of females, we sought to determine whether adult physiological and reproductive limits might slow the northern expansion of U. pugnax. We did not find a latitudinal cline for HSI, suggesting that U. pugnax is a thermal generalist; however, both males and females in the southern part of the range showed greater seasonal fluctuations in HSI compared to northern conspecifics. Across the range, ovigerous females had a significantly reduced HSI, revealing the cost of reproduction. Ovigerous females were found in the May 2013 collection in Massachusetts be fore ocean conditions were permissible for larval development and earlier than previously reported for this species. U. pugnax is expected to closely track warming conditions in the Northwest Atlantic because adults in northern populations are able to maintain energy stores comparable to that of their southern conspecifics, and they release planktonic larvae in early spring, maximizing their dispersal potential.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":"44 1","pages":"113-123"},"PeriodicalIF":1.3000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Seasonal and latitudinal variations in the energy reserves of the mud fiddler crab Uca pugnax: implications for the response to climate change\",\"authors\":\"R. Brodie, B. Roberts, Jessica I. Espinosa, K. Heilman, Stephen A. Borgianini, J. Welch, K. A. Reinsel\",\"doi\":\"10.3354/AB00683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2014, the Atlantic mud fiddler crab Uca pugnax was found 80 km north of its previously known northern range limit. Two years before this shift was noted, we collected a total of 781 male and female specimens from 6 populations along a latitudinal transect extending from Wareham, Massachusetts (41.7615° N), to Tybee Island, Georgia (32.0139° N), USA. By assessing latitudinal and seasonal patterns in the hepatosomatic index (HSI; a measure of stored energy) and the reproductive status of females, we sought to determine whether adult physiological and reproductive limits might slow the northern expansion of U. pugnax. We did not find a latitudinal cline for HSI, suggesting that U. pugnax is a thermal generalist; however, both males and females in the southern part of the range showed greater seasonal fluctuations in HSI compared to northern conspecifics. Across the range, ovigerous females had a significantly reduced HSI, revealing the cost of reproduction. Ovigerous females were found in the May 2013 collection in Massachusetts be fore ocean conditions were permissible for larval development and earlier than previously reported for this species. U. pugnax is expected to closely track warming conditions in the Northwest Atlantic because adults in northern populations are able to maintain energy stores comparable to that of their southern conspecifics, and they release planktonic larvae in early spring, maximizing their dispersal potential.\",\"PeriodicalId\":8111,\"journal\":{\"name\":\"Aquatic Biology\",\"volume\":\"44 1\",\"pages\":\"113-123\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3354/AB00683\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/AB00683","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Seasonal and latitudinal variations in the energy reserves of the mud fiddler crab Uca pugnax: implications for the response to climate change
In 2014, the Atlantic mud fiddler crab Uca pugnax was found 80 km north of its previously known northern range limit. Two years before this shift was noted, we collected a total of 781 male and female specimens from 6 populations along a latitudinal transect extending from Wareham, Massachusetts (41.7615° N), to Tybee Island, Georgia (32.0139° N), USA. By assessing latitudinal and seasonal patterns in the hepatosomatic index (HSI; a measure of stored energy) and the reproductive status of females, we sought to determine whether adult physiological and reproductive limits might slow the northern expansion of U. pugnax. We did not find a latitudinal cline for HSI, suggesting that U. pugnax is a thermal generalist; however, both males and females in the southern part of the range showed greater seasonal fluctuations in HSI compared to northern conspecifics. Across the range, ovigerous females had a significantly reduced HSI, revealing the cost of reproduction. Ovigerous females were found in the May 2013 collection in Massachusetts be fore ocean conditions were permissible for larval development and earlier than previously reported for this species. U. pugnax is expected to closely track warming conditions in the Northwest Atlantic because adults in northern populations are able to maintain energy stores comparable to that of their southern conspecifics, and they release planktonic larvae in early spring, maximizing their dispersal potential.
期刊介绍:
AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include:
-Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species.
-Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation.
-Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses.
-Molecular biology of aquatic life.
-Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior.
-Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration.
-Theoretical biology: mathematical modelling of biological processes and species interactions.
-Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation.
-Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources.
-Reproduction and development in marine, brackish and freshwater organisms