{"title":"贝叶斯推理,模型选择和使用快速拒绝抽样的似然估计:康威-麦克斯韦-泊松分布","authors":"Alan Benson, N. Friel","doi":"10.1214/20-ba1230","DOIUrl":null,"url":null,"abstract":"Bayesian inference for models with intractable likelihood functions represents a challenging suite of problems in modern statistics. In this work we analyse the Conway-Maxwell-Poisson (COM-Poisson) distribution, a two parameter generalisation of the Poisson distribution. COM-Poisson regression modelling allows the flexibility to model dispersed count data as part of a generalised linear model (GLM) with a COM-Poisson response, where exogenous covariates control the mean and dispersion level of the response. The major difficulty with COM-Poisson regression is that the likelihood function contains multiple intractable normalising constants and is not amenable to standard inference and MCMC techniques. Recent work by Chanialidis et al. (2017) has seen the development of a sampler to draw random variates from the COM-Poisson likelihood using a rejection sampling algorithm. We provide a new rejection sampler for the COM-Poisson distribution which significantly reduces the CPU time required to perform inference for COM-Poisson regression models. A novel extension of this work shows that for any intractable likelihood function with an associated rejection sampler it is possible to construct unbiased estimators of the intractable likelihood which proves useful for model selection or for use within pseudo-marginal MCMC algorithms (Andrieu and Roberts, 2009). We demonstrate all of these methods on a real-world dataset of takeover bids.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Bayesian inference, model selection and likelihood estimation using fast rejection sampling: the Conway-Maxwell-Poisson distribution\",\"authors\":\"Alan Benson, N. Friel\",\"doi\":\"10.1214/20-ba1230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian inference for models with intractable likelihood functions represents a challenging suite of problems in modern statistics. In this work we analyse the Conway-Maxwell-Poisson (COM-Poisson) distribution, a two parameter generalisation of the Poisson distribution. COM-Poisson regression modelling allows the flexibility to model dispersed count data as part of a generalised linear model (GLM) with a COM-Poisson response, where exogenous covariates control the mean and dispersion level of the response. The major difficulty with COM-Poisson regression is that the likelihood function contains multiple intractable normalising constants and is not amenable to standard inference and MCMC techniques. Recent work by Chanialidis et al. (2017) has seen the development of a sampler to draw random variates from the COM-Poisson likelihood using a rejection sampling algorithm. We provide a new rejection sampler for the COM-Poisson distribution which significantly reduces the CPU time required to perform inference for COM-Poisson regression models. A novel extension of this work shows that for any intractable likelihood function with an associated rejection sampler it is possible to construct unbiased estimators of the intractable likelihood which proves useful for model selection or for use within pseudo-marginal MCMC algorithms (Andrieu and Roberts, 2009). We demonstrate all of these methods on a real-world dataset of takeover bids.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ba1230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ba1230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian inference, model selection and likelihood estimation using fast rejection sampling: the Conway-Maxwell-Poisson distribution
Bayesian inference for models with intractable likelihood functions represents a challenging suite of problems in modern statistics. In this work we analyse the Conway-Maxwell-Poisson (COM-Poisson) distribution, a two parameter generalisation of the Poisson distribution. COM-Poisson regression modelling allows the flexibility to model dispersed count data as part of a generalised linear model (GLM) with a COM-Poisson response, where exogenous covariates control the mean and dispersion level of the response. The major difficulty with COM-Poisson regression is that the likelihood function contains multiple intractable normalising constants and is not amenable to standard inference and MCMC techniques. Recent work by Chanialidis et al. (2017) has seen the development of a sampler to draw random variates from the COM-Poisson likelihood using a rejection sampling algorithm. We provide a new rejection sampler for the COM-Poisson distribution which significantly reduces the CPU time required to perform inference for COM-Poisson regression models. A novel extension of this work shows that for any intractable likelihood function with an associated rejection sampler it is possible to construct unbiased estimators of the intractable likelihood which proves useful for model selection or for use within pseudo-marginal MCMC algorithms (Andrieu and Roberts, 2009). We demonstrate all of these methods on a real-world dataset of takeover bids.