学习线性变换快速图像和视频风格转移

Xueting Li, Sifei Liu, J. Kautz, Ming-Hsuan Yang
{"title":"学习线性变换快速图像和视频风格转移","authors":"Xueting Li, Sifei Liu, J. Kautz, Ming-Hsuan Yang","doi":"10.1109/CVPR.2019.00393","DOIUrl":null,"url":null,"abstract":"Given a random pair of images, a universal style transfer method extracts the feel from a reference image to synthesize an output based on the look of a content image. Recent algorithms based on second-order statistics, however, are either computationally expensive or prone to generate artifacts due to the trade-off between image quality and runtime performance. In this work, we present an approach for universal style transfer that learns the transformation matrix in a data-driven fashion. Our algorithm is efficient yet flexible to transfer different levels of styles with the same auto-encoder network. It also produces stable video style transfer results due to the preservation of the content affinity. In addition, we propose a linear propagation module to enable a feed-forward network for photo-realistic style transfer. We demonstrate the effectiveness of our approach on three tasks: artistic style, photo-realistic and video style transfer, with comparisons to state-of-the-art methods.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"40 1","pages":"3804-3812"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":"{\"title\":\"Learning Linear Transformations for Fast Image and Video Style Transfer\",\"authors\":\"Xueting Li, Sifei Liu, J. Kautz, Ming-Hsuan Yang\",\"doi\":\"10.1109/CVPR.2019.00393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a random pair of images, a universal style transfer method extracts the feel from a reference image to synthesize an output based on the look of a content image. Recent algorithms based on second-order statistics, however, are either computationally expensive or prone to generate artifacts due to the trade-off between image quality and runtime performance. In this work, we present an approach for universal style transfer that learns the transformation matrix in a data-driven fashion. Our algorithm is efficient yet flexible to transfer different levels of styles with the same auto-encoder network. It also produces stable video style transfer results due to the preservation of the content affinity. In addition, we propose a linear propagation module to enable a feed-forward network for photo-realistic style transfer. We demonstrate the effectiveness of our approach on three tasks: artistic style, photo-realistic and video style transfer, with comparisons to state-of-the-art methods.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"40 1\",\"pages\":\"3804-3812\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"178\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178

摘要

给定随机的一对图像,通用风格转换方法从参考图像中提取感觉,以基于内容图像的外观合成输出。然而,基于二阶统计量的最新算法要么计算成本高,要么由于图像质量和运行时性能之间的权衡而容易产生伪影。在这项工作中,我们提出了一种通用风格迁移方法,该方法以数据驱动的方式学习变换矩阵。我们的算法在使用相同的自编码器网络传输不同层次的风格时,效率高且灵活。由于保留了内容亲和力,也产生了稳定的视频风格转移效果。此外,我们提出了一个线性传播模块,以实现前馈网络的真实感风格传递。我们展示了我们的方法在三个任务上的有效性:艺术风格、照片真实感和视频风格转移,并与最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Linear Transformations for Fast Image and Video Style Transfer
Given a random pair of images, a universal style transfer method extracts the feel from a reference image to synthesize an output based on the look of a content image. Recent algorithms based on second-order statistics, however, are either computationally expensive or prone to generate artifacts due to the trade-off between image quality and runtime performance. In this work, we present an approach for universal style transfer that learns the transformation matrix in a data-driven fashion. Our algorithm is efficient yet flexible to transfer different levels of styles with the same auto-encoder network. It also produces stable video style transfer results due to the preservation of the content affinity. In addition, we propose a linear propagation module to enable a feed-forward network for photo-realistic style transfer. We demonstrate the effectiveness of our approach on three tasks: artistic style, photo-realistic and video style transfer, with comparisons to state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信