Hua Zhu, Hai Zhang, Tianhang Zhang, Quan Wei, Shi Yu, Hao Gao, P. Guo, Yanxiang Wang, Zhi-sheng Yang
{"title":"溅射功率对柔性氟绿石衬底上ITO薄膜光电性能的影响","authors":"Hua Zhu, Hai Zhang, Tianhang Zhang, Quan Wei, Shi Yu, Hao Gao, P. Guo, Yanxiang Wang, Zhi-sheng Yang","doi":"10.1002/crat.202100060","DOIUrl":null,"url":null,"abstract":"In this study, magnetron sputtering is implemented to adjust the sputtering power from 156 to 306 W at room temperature, and thin film samples of indium tin oxide (ITO) on a flexible fluorphlogopite substrate are taken. With the increase in power, the resistivity of the film first decreases and then increases. The resistivity is at least 1.51 × 10–3 Ω cm at 276 W, and the highest resistivity is 2.93 × 10–2 Ω cm at 156 W. The average light transmittance of the film (400–800 nm) decreases with the increase in power within the range of 156–276 W, The highest average transmittance is 92.6% at 156 W. The quality factor of the film first rises and then decreases as the power increases, it is as high as 4.47 × 10–3 Ω–1sq at 276 W. All the AFMs show that the roughness of the sample does not significantly change with power. The SEM picture shows that as the power increases from 156 to 276 W, the grain size increases slightly. All samples are bent 1200 times around a steel cylinder, and the sheet resistance does not change more than 5%.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"44 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Sputtering Power on the Optical and Electrical Properties of ITO Films on a Flexible Fluorphlogopite Substrate\",\"authors\":\"Hua Zhu, Hai Zhang, Tianhang Zhang, Quan Wei, Shi Yu, Hao Gao, P. Guo, Yanxiang Wang, Zhi-sheng Yang\",\"doi\":\"10.1002/crat.202100060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, magnetron sputtering is implemented to adjust the sputtering power from 156 to 306 W at room temperature, and thin film samples of indium tin oxide (ITO) on a flexible fluorphlogopite substrate are taken. With the increase in power, the resistivity of the film first decreases and then increases. The resistivity is at least 1.51 × 10–3 Ω cm at 276 W, and the highest resistivity is 2.93 × 10–2 Ω cm at 156 W. The average light transmittance of the film (400–800 nm) decreases with the increase in power within the range of 156–276 W, The highest average transmittance is 92.6% at 156 W. The quality factor of the film first rises and then decreases as the power increases, it is as high as 4.47 × 10–3 Ω–1sq at 276 W. All the AFMs show that the roughness of the sample does not significantly change with power. The SEM picture shows that as the power increases from 156 to 276 W, the grain size increases slightly. All samples are bent 1200 times around a steel cylinder, and the sheet resistance does not change more than 5%.\",\"PeriodicalId\":10797,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/crat.202100060\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100060","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Effect of Sputtering Power on the Optical and Electrical Properties of ITO Films on a Flexible Fluorphlogopite Substrate
In this study, magnetron sputtering is implemented to adjust the sputtering power from 156 to 306 W at room temperature, and thin film samples of indium tin oxide (ITO) on a flexible fluorphlogopite substrate are taken. With the increase in power, the resistivity of the film first decreases and then increases. The resistivity is at least 1.51 × 10–3 Ω cm at 276 W, and the highest resistivity is 2.93 × 10–2 Ω cm at 156 W. The average light transmittance of the film (400–800 nm) decreases with the increase in power within the range of 156–276 W, The highest average transmittance is 92.6% at 156 W. The quality factor of the film first rises and then decreases as the power increases, it is as high as 4.47 × 10–3 Ω–1sq at 276 W. All the AFMs show that the roughness of the sample does not significantly change with power. The SEM picture shows that as the power increases from 156 to 276 W, the grain size increases slightly. All samples are bent 1200 times around a steel cylinder, and the sheet resistance does not change more than 5%.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing