关于*−ricci流的一些结果

Dipankar Debnath, Nirabhra Basu
{"title":"关于*−ricci流的一些结果","authors":"Dipankar Debnath, Nirabhra Basu","doi":"10.22190/FUMI2005305D","DOIUrl":null,"url":null,"abstract":"In this paper we have introduced the notion of $*-$ Ricci flow and shown that $*-$ Ricci soliton which was introduced by Kakimakamis and Panagiotid in 2014, is a self similar soliton of the $*-$ Ricci flow. We have also find the deformation of geometric curvature tensors under $*-$ Ricci flow. In the last two section of the paper, we have found the $\\Im$-functional and $\\omega-$ functional for $*-$ Ricci flow respectively.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME RESULTS ON ∗−RICCI FLOW\",\"authors\":\"Dipankar Debnath, Nirabhra Basu\",\"doi\":\"10.22190/FUMI2005305D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have introduced the notion of $*-$ Ricci flow and shown that $*-$ Ricci soliton which was introduced by Kakimakamis and Panagiotid in 2014, is a self similar soliton of the $*-$ Ricci flow. We have also find the deformation of geometric curvature tensors under $*-$ Ricci flow. In the last two section of the paper, we have found the $\\\\Im$-functional and $\\\\omega-$ functional for $*-$ Ricci flow respectively.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI2005305D\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI2005305D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了$*-$ Ricci流的概念,并证明了由Kakimakamis和Panagiotid于2014年提出的$*-$ Ricci孤子是$*-$ Ricci流的自相似孤子。我们还发现了几何曲率张量在Ricci流下的变形。在本文的后两节中,我们分别找到了$*-$ Ricci流的$\ m$泛函和$\omega-$泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME RESULTS ON ∗−RICCI FLOW
In this paper we have introduced the notion of $*-$ Ricci flow and shown that $*-$ Ricci soliton which was introduced by Kakimakamis and Panagiotid in 2014, is a self similar soliton of the $*-$ Ricci flow. We have also find the deformation of geometric curvature tensors under $*-$ Ricci flow. In the last two section of the paper, we have found the $\Im$-functional and $\omega-$ functional for $*-$ Ricci flow respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信