使用两两比较的音乐偏好预测模型

B. S. Jensen, J. S. Gallego, Jan Larsen
{"title":"使用两两比较的音乐偏好预测模型","authors":"B. S. Jensen, J. S. Gallego, Jan Larsen","doi":"10.1109/ICASSP.2012.6288294","DOIUrl":null,"url":null,"abstract":"Music recommendation is an important aspect of many streaming services and multi-media systems, however, it is typically based on so-called collaborative filtering methods. In this paper we consider the recommendation task from a personal viewpoint and examine to which degree music preference can be elicited and predicted using simple and robust queries such as pairwise comparisons. We propose to model - and in turn predict - the pairwise music preference using a very flexible model based on Gaussian Process priors for which we describe the required inference. We further propose a specific covariance function and evaluate the predictive performance on a novel dataset. In a recommendation style setting we obtain a leave-one-out accuracy of 74% compared to 50% with random predictions, showing potential for further refinement and evaluation.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1","pages":"1977-1980"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A predictive model of music preference using pairwise comparisons\",\"authors\":\"B. S. Jensen, J. S. Gallego, Jan Larsen\",\"doi\":\"10.1109/ICASSP.2012.6288294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music recommendation is an important aspect of many streaming services and multi-media systems, however, it is typically based on so-called collaborative filtering methods. In this paper we consider the recommendation task from a personal viewpoint and examine to which degree music preference can be elicited and predicted using simple and robust queries such as pairwise comparisons. We propose to model - and in turn predict - the pairwise music preference using a very flexible model based on Gaussian Process priors for which we describe the required inference. We further propose a specific covariance function and evaluate the predictive performance on a novel dataset. In a recommendation style setting we obtain a leave-one-out accuracy of 74% compared to 50% with random predictions, showing potential for further refinement and evaluation.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"13 1\",\"pages\":\"1977-1980\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

音乐推荐是许多流媒体服务和多媒体系统的一个重要方面,然而,它通常是基于所谓的协同过滤方法。在本文中,我们从个人的角度考虑推荐任务,并检查在多大程度上可以使用简单而稳健的查询(如两两比较)来引出和预测音乐偏好。我们建议使用基于高斯过程先验的非常灵活的模型来建模-并反过来预测-两两音乐偏好,我们描述了所需的推理。我们进一步提出了一个特定的协方差函数,并评估了在一个新的数据集上的预测性能。在推荐风格设置中,我们获得了74%的留一准确率,而随机预测的准确率为50%,显示出进一步改进和评估的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A predictive model of music preference using pairwise comparisons
Music recommendation is an important aspect of many streaming services and multi-media systems, however, it is typically based on so-called collaborative filtering methods. In this paper we consider the recommendation task from a personal viewpoint and examine to which degree music preference can be elicited and predicted using simple and robust queries such as pairwise comparisons. We propose to model - and in turn predict - the pairwise music preference using a very flexible model based on Gaussian Process priors for which we describe the required inference. We further propose a specific covariance function and evaluate the predictive performance on a novel dataset. In a recommendation style setting we obtain a leave-one-out accuracy of 74% compared to 50% with random predictions, showing potential for further refinement and evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信