基于嵌入标记点处理框架的分层图像内容分析

C. Benedek
{"title":"基于嵌入标记点处理框架的分层图像内容分析","authors":"C. Benedek","doi":"10.1109/ICASSP.2014.6854576","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a probabilistic approach for extracting complex hierarchical object structures from digital images. The proposed framework extends conventional Marked Point Process models by (i) admitting object-subobject ensembles in parent-child relationships and (ii) allowing corresponding objects to form coherent object groups. The proposed method is demonstrated in three application areas: optical circuit inspection, built in area analysis in aerial images, and traffic monitoring on airborne Lidar data.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"42 1","pages":"5110-5114"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical image content analysis with an embedded marked point process framework\",\"authors\":\"C. Benedek\",\"doi\":\"10.1109/ICASSP.2014.6854576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a probabilistic approach for extracting complex hierarchical object structures from digital images. The proposed framework extends conventional Marked Point Process models by (i) admitting object-subobject ensembles in parent-child relationships and (ii) allowing corresponding objects to form coherent object groups. The proposed method is demonstrated in three application areas: optical circuit inspection, built in area analysis in aerial images, and traffic monitoring on airborne Lidar data.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"42 1\",\"pages\":\"5110-5114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种从数字图像中提取复杂层次物体结构的概率方法。提出的框架扩展了传统的标记点过程模型,通过(i)在父子关系中允许对象-子对象集成,(ii)允许相应的对象形成连贯的对象组。该方法在光学电路检测、航空图像内建区域分析和机载激光雷达数据交通监控三个应用领域得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical image content analysis with an embedded marked point process framework
In this paper we introduce a probabilistic approach for extracting complex hierarchical object structures from digital images. The proposed framework extends conventional Marked Point Process models by (i) admitting object-subobject ensembles in parent-child relationships and (ii) allowing corresponding objects to form coherent object groups. The proposed method is demonstrated in three application areas: optical circuit inspection, built in area analysis in aerial images, and traffic monitoring on airborne Lidar data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信