{"title":"关于图的Steiner分解数的一些结果","authors":"E. Merly, Mahiba M","doi":"10.48129/kjs.16863","DOIUrl":null,"url":null,"abstract":"Let G be a connected graph with Steiner number s(G). A decomposition π = {G1,G2, ...,Gn} is said to be a Steiner decomposition if s(Gi) = s(G) for all i (1 ≤ i ≤ n). The maximum cardinality obtained for the Steiner decomposition π of G is called the Steiner decomposition number of G and is denoted by πst(G). In this paper we present a relation between Steiner decomposition number and independence number of G. Steiner decomposition number for some power of paths are discussed. It is also shown that given any pair m, n of positive integers with m ≥ 2 there exists a connected graph G such that s(G) = m and πst(G) = n.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on Steiner decomposition number of graphs\",\"authors\":\"E. Merly, Mahiba M\",\"doi\":\"10.48129/kjs.16863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a connected graph with Steiner number s(G). A decomposition π = {G1,G2, ...,Gn} is said to be a Steiner decomposition if s(Gi) = s(G) for all i (1 ≤ i ≤ n). The maximum cardinality obtained for the Steiner decomposition π of G is called the Steiner decomposition number of G and is denoted by πst(G). In this paper we present a relation between Steiner decomposition number and independence number of G. Steiner decomposition number for some power of paths are discussed. It is also shown that given any pair m, n of positive integers with m ≥ 2 there exists a connected graph G such that s(G) = m and πst(G) = n.\",\"PeriodicalId\":49933,\"journal\":{\"name\":\"Kuwait Journal of Science & Engineering\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48129/kjs.16863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.16863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some results on Steiner decomposition number of graphs
Let G be a connected graph with Steiner number s(G). A decomposition π = {G1,G2, ...,Gn} is said to be a Steiner decomposition if s(Gi) = s(G) for all i (1 ≤ i ≤ n). The maximum cardinality obtained for the Steiner decomposition π of G is called the Steiner decomposition number of G and is denoted by πst(G). In this paper we present a relation between Steiner decomposition number and independence number of G. Steiner decomposition number for some power of paths are discussed. It is also shown that given any pair m, n of positive integers with m ≥ 2 there exists a connected graph G such that s(G) = m and πst(G) = n.