Alexandre Barboni, Solange Coadou-Chaventon, A. Stegner, B. Le Vu, F. Dumas
{"title":"地下和双核反气旋如何加剧地中海冬季混合层加深","authors":"Alexandre Barboni, Solange Coadou-Chaventon, A. Stegner, B. Le Vu, F. Dumas","doi":"10.5194/os-19-229-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The mixed layer is the uppermost layer of the ocean, connecting the atmosphere to the subsurface ocean through atmospheric fluxes. It is subject to pronounced seasonal variations: it deepens in winter due to buoyancy loss and shallows in spring while heat flux increases and restratifies the water column. A mixed-layer depth (MLD) modulation over this seasonal cycle has been observed within mesoscale eddies. Taking advantage of the numerous Argo floats deployed and trapped within large Mediterranean anticyclones over the last decades, we reveal for the first time this modulation at a 10 d temporal scale, free of the smoothing effect of composite approaches. The analysis of 16 continuous MLD time series inside 13 long-lived anticyclones at a fine temporal scale brings to light the importance of the eddy pre-existing vertical structure in setting the MLD modulation by mesoscale eddies. Extreme MLD anomalies of up to 330 m are observed when the winter mixed layer connects with a pre-existing subsurface anticyclonic core, greatly accelerating mixed-layer deepening. The winter MLD sometimes does not achieve such connection but homogenizes another subsurface layer, then forming a multi-core anticyclone with spring restratification. An MLD restratification delay is always observed, reaching more than 2 months in 3 out the 16 MLD time series. The water column starts to restratify outside anticyclones, while the mixed layer keeps deepening and cooling at the eddy core for a longer time. These new elements provide new keys for understanding anticyclone vertical-structure formation and evolution.\n","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"40 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How subsurface and double-core anticyclones intensify the winter mixed-layer deepening in the Mediterranean Sea\",\"authors\":\"Alexandre Barboni, Solange Coadou-Chaventon, A. Stegner, B. Le Vu, F. Dumas\",\"doi\":\"10.5194/os-19-229-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The mixed layer is the uppermost layer of the ocean, connecting the atmosphere to the subsurface ocean through atmospheric fluxes. It is subject to pronounced seasonal variations: it deepens in winter due to buoyancy loss and shallows in spring while heat flux increases and restratifies the water column. A mixed-layer depth (MLD) modulation over this seasonal cycle has been observed within mesoscale eddies. Taking advantage of the numerous Argo floats deployed and trapped within large Mediterranean anticyclones over the last decades, we reveal for the first time this modulation at a 10 d temporal scale, free of the smoothing effect of composite approaches. The analysis of 16 continuous MLD time series inside 13 long-lived anticyclones at a fine temporal scale brings to light the importance of the eddy pre-existing vertical structure in setting the MLD modulation by mesoscale eddies. Extreme MLD anomalies of up to 330 m are observed when the winter mixed layer connects with a pre-existing subsurface anticyclonic core, greatly accelerating mixed-layer deepening. The winter MLD sometimes does not achieve such connection but homogenizes another subsurface layer, then forming a multi-core anticyclone with spring restratification. An MLD restratification delay is always observed, reaching more than 2 months in 3 out the 16 MLD time series. The water column starts to restratify outside anticyclones, while the mixed layer keeps deepening and cooling at the eddy core for a longer time. These new elements provide new keys for understanding anticyclone vertical-structure formation and evolution.\\n\",\"PeriodicalId\":19535,\"journal\":{\"name\":\"Ocean Science\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/os-19-229-2023\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/os-19-229-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
How subsurface and double-core anticyclones intensify the winter mixed-layer deepening in the Mediterranean Sea
Abstract. The mixed layer is the uppermost layer of the ocean, connecting the atmosphere to the subsurface ocean through atmospheric fluxes. It is subject to pronounced seasonal variations: it deepens in winter due to buoyancy loss and shallows in spring while heat flux increases and restratifies the water column. A mixed-layer depth (MLD) modulation over this seasonal cycle has been observed within mesoscale eddies. Taking advantage of the numerous Argo floats deployed and trapped within large Mediterranean anticyclones over the last decades, we reveal for the first time this modulation at a 10 d temporal scale, free of the smoothing effect of composite approaches. The analysis of 16 continuous MLD time series inside 13 long-lived anticyclones at a fine temporal scale brings to light the importance of the eddy pre-existing vertical structure in setting the MLD modulation by mesoscale eddies. Extreme MLD anomalies of up to 330 m are observed when the winter mixed layer connects with a pre-existing subsurface anticyclonic core, greatly accelerating mixed-layer deepening. The winter MLD sometimes does not achieve such connection but homogenizes another subsurface layer, then forming a multi-core anticyclone with spring restratification. An MLD restratification delay is always observed, reaching more than 2 months in 3 out the 16 MLD time series. The water column starts to restratify outside anticyclones, while the mixed layer keeps deepening and cooling at the eddy core for a longer time. These new elements provide new keys for understanding anticyclone vertical-structure formation and evolution.
期刊介绍:
Ocean Science (OS) is a not-for-profit international open-access scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of ocean science: experimental, theoretical, and laboratory. The primary objective is to publish a very high-quality scientific journal with free Internet-based access for researchers and other interested people throughout the world.
Electronic submission of articles is used to keep publication costs to a minimum. The costs will be covered by a moderate per-page charge paid by the authors. The peer-review process also makes use of the Internet. It includes an 8-week online discussion period with the original submitted manuscript and all comments. If accepted, the final revised paper will be published online.
Ocean Science covers the following fields: ocean physics (i.e. ocean structure, circulation, tides, and internal waves); ocean chemistry; biological oceanography; air–sea interactions; ocean models – physical, chemical, biological, and biochemical; coastal and shelf edge processes; paleooceanography.