M. Zaki, U. Hashim, M. K. Md Arshad, M. Fathil, A. R. Ruslinda, R. M. Ayub, S. Gopinath, C. Voon, K. L. Foo, R. Adzhri, A. H. Azman
{"title":"二氧化锡性能对甲醛气体传感器的实时检测","authors":"M. Zaki, U. Hashim, M. K. Md Arshad, M. Fathil, A. R. Ruslinda, R. M. Ayub, S. Gopinath, C. Voon, K. L. Foo, R. Adzhri, A. H. Azman","doi":"10.1109/RSM.2015.7355001","DOIUrl":null,"url":null,"abstract":"This paper presents real time detection of formaldehyde gas by using the properties of tin dioxide (SnO2) thin film on a formaldehyde gas sensor. SnO2 thin film is coated on aluminum IDE electrodes which is fabricated on a glass substrate by using sol-gel technique and annealed to get the crystallization of SnO2. The surface morphologies of the SnO2 thin film is examined and studied through atomic force microscopy (AFM). For the real-time detection, formaldehyde gas was inject inside the gas chamber. The hot plate with the temperature of 200°C inside the gas chamber is used to evaporate the formaldehyde gas, subsequently exposing it to the surface of SnO2 thin film. Electrical conductivity of the SnO2 thin film is increased and allowed current to flow through it. The potential difference at the gas sensor is measured using voltmeter. During real time detection, various amount of formaldehyde liquid which are 0.1 μl, 0.3 μl, and 0.5 μl are injected into the gas chamber, thus produced potential differences of 0.8 V, 2.2 V and 3.5 V, respectively.","PeriodicalId":6667,"journal":{"name":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"32 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Real-time detection by properties of tin dioxide for formaldehyde gas sensor\",\"authors\":\"M. Zaki, U. Hashim, M. K. Md Arshad, M. Fathil, A. R. Ruslinda, R. M. Ayub, S. Gopinath, C. Voon, K. L. Foo, R. Adzhri, A. H. Azman\",\"doi\":\"10.1109/RSM.2015.7355001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents real time detection of formaldehyde gas by using the properties of tin dioxide (SnO2) thin film on a formaldehyde gas sensor. SnO2 thin film is coated on aluminum IDE electrodes which is fabricated on a glass substrate by using sol-gel technique and annealed to get the crystallization of SnO2. The surface morphologies of the SnO2 thin film is examined and studied through atomic force microscopy (AFM). For the real-time detection, formaldehyde gas was inject inside the gas chamber. The hot plate with the temperature of 200°C inside the gas chamber is used to evaporate the formaldehyde gas, subsequently exposing it to the surface of SnO2 thin film. Electrical conductivity of the SnO2 thin film is increased and allowed current to flow through it. The potential difference at the gas sensor is measured using voltmeter. During real time detection, various amount of formaldehyde liquid which are 0.1 μl, 0.3 μl, and 0.5 μl are injected into the gas chamber, thus produced potential differences of 0.8 V, 2.2 V and 3.5 V, respectively.\",\"PeriodicalId\":6667,\"journal\":{\"name\":\"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"volume\":\"32 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2015.7355001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2015.7355001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time detection by properties of tin dioxide for formaldehyde gas sensor
This paper presents real time detection of formaldehyde gas by using the properties of tin dioxide (SnO2) thin film on a formaldehyde gas sensor. SnO2 thin film is coated on aluminum IDE electrodes which is fabricated on a glass substrate by using sol-gel technique and annealed to get the crystallization of SnO2. The surface morphologies of the SnO2 thin film is examined and studied through atomic force microscopy (AFM). For the real-time detection, formaldehyde gas was inject inside the gas chamber. The hot plate with the temperature of 200°C inside the gas chamber is used to evaporate the formaldehyde gas, subsequently exposing it to the surface of SnO2 thin film. Electrical conductivity of the SnO2 thin film is increased and allowed current to flow through it. The potential difference at the gas sensor is measured using voltmeter. During real time detection, various amount of formaldehyde liquid which are 0.1 μl, 0.3 μl, and 0.5 μl are injected into the gas chamber, thus produced potential differences of 0.8 V, 2.2 V and 3.5 V, respectively.