{"title":"用有限元方法模拟冰雪环境中声波的传播和混响","authors":"B. Simon, M. Isakson, M. Ballard","doi":"10.1121/2.0000842","DOIUrl":null,"url":null,"abstract":"A three-dimensional, longitudinally invariant, finite element model of acoustic propagation and reverberation in an ice-covered shallow water waveguide has been developed. The ice is modeled as both an elastic medium and a pressure release surface. Transmission loss levels are calculated and compared for both representations of ice. Using Fourier synthesis, the frequency-domain acoustic pressure results are transformed into the time domain, and reverberation levels are then compared for both representations of ice. The time-domain results show differences between each ice representation that are not captured in the frequency domain. Finally, some possible explanations are presented for these model differences, including compressional-to-shear wave conversion at the ice-water interface and steep incident angle scattering from the ice.A three-dimensional, longitudinally invariant, finite element model of acoustic propagation and reverberation in an ice-covered shallow water waveguide has been developed. The ice is modeled as both an elastic medium and a pressure release surface. Transmission loss levels are calculated and compared for both representations of ice. Using Fourier synthesis, the frequency-domain acoustic pressure results are transformed into the time domain, and reverberation levels are then compared for both representations of ice. The time-domain results show differences between each ice representation that are not captured in the frequency domain. Finally, some possible explanations are presented for these model differences, including compressional-to-shear wave conversion at the ice-water interface and steep incident angle scattering from the ice.","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling acoustic wave propagation and reverberation in an ice covered environment using finite element analysis\",\"authors\":\"B. Simon, M. Isakson, M. Ballard\",\"doi\":\"10.1121/2.0000842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three-dimensional, longitudinally invariant, finite element model of acoustic propagation and reverberation in an ice-covered shallow water waveguide has been developed. The ice is modeled as both an elastic medium and a pressure release surface. Transmission loss levels are calculated and compared for both representations of ice. Using Fourier synthesis, the frequency-domain acoustic pressure results are transformed into the time domain, and reverberation levels are then compared for both representations of ice. The time-domain results show differences between each ice representation that are not captured in the frequency domain. Finally, some possible explanations are presented for these model differences, including compressional-to-shear wave conversion at the ice-water interface and steep incident angle scattering from the ice.A three-dimensional, longitudinally invariant, finite element model of acoustic propagation and reverberation in an ice-covered shallow water waveguide has been developed. The ice is modeled as both an elastic medium and a pressure release surface. Transmission loss levels are calculated and compared for both representations of ice. Using Fourier synthesis, the frequency-domain acoustic pressure results are transformed into the time domain, and reverberation levels are then compared for both representations of ice. The time-domain results show differences between each ice representation that are not captured in the frequency domain. Finally, some possible explanations are presented for these model differences, including compressional-to-shear wave conversion at the ice-water interface and steep incident angle scattering from the ice.\",\"PeriodicalId\":20469,\"journal\":{\"name\":\"Proc. Meet. Acoust.\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. Meet. Acoust.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0000842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling acoustic wave propagation and reverberation in an ice covered environment using finite element analysis
A three-dimensional, longitudinally invariant, finite element model of acoustic propagation and reverberation in an ice-covered shallow water waveguide has been developed. The ice is modeled as both an elastic medium and a pressure release surface. Transmission loss levels are calculated and compared for both representations of ice. Using Fourier synthesis, the frequency-domain acoustic pressure results are transformed into the time domain, and reverberation levels are then compared for both representations of ice. The time-domain results show differences between each ice representation that are not captured in the frequency domain. Finally, some possible explanations are presented for these model differences, including compressional-to-shear wave conversion at the ice-water interface and steep incident angle scattering from the ice.A three-dimensional, longitudinally invariant, finite element model of acoustic propagation and reverberation in an ice-covered shallow water waveguide has been developed. The ice is modeled as both an elastic medium and a pressure release surface. Transmission loss levels are calculated and compared for both representations of ice. Using Fourier synthesis, the frequency-domain acoustic pressure results are transformed into the time domain, and reverberation levels are then compared for both representations of ice. The time-domain results show differences between each ice representation that are not captured in the frequency domain. Finally, some possible explanations are presented for these model differences, including compressional-to-shear wave conversion at the ice-water interface and steep incident angle scattering from the ice.