{"title":"一种新的双重cornachia型算法及其应用","authors":"Bei Wang, Ouyang Yi, Songsong Li, Honggang Hu","doi":"10.3934/amc.2021026","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We focus on exploring more potential of Longa and Sica's algorithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions. The algorithm consists of two sub-algorithms, the first one in the ring of integers <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{Z} $\\end{document}</tex-math></inline-formula> and the second one in the Gaussian integer ring <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathbb{Z}[i] $\\end{document}</tex-math></inline-formula>. We observe that <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathbb{Z}[i] $\\end{document}</tex-math></inline-formula> in the second sub-algorithm can be replaced by another Euclidean domain <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathbb{Z}[\\omega] $\\end{document}</tex-math></inline-formula> <inline-formula><tex-math id=\"M5\">\\begin{document}$ (\\omega = \\frac{-1+\\sqrt{-3}}{2}) $\\end{document}</tex-math></inline-formula>. As a consequence, we design a new twofold Cornacchia-type algorithm with a theoretic upper bound of output <inline-formula><tex-math id=\"M6\">\\begin{document}$ C\\cdot n^{1/4} $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M7\">\\begin{document}$ C = \\frac{3+\\sqrt{3}}{2}\\sqrt{1+|r|+|s|} $\\end{document}</tex-math></inline-formula> with small values <inline-formula><tex-math id=\"M8\">\\begin{document}$ r, s $\\end{document}</tex-math></inline-formula> given by the curves.</p><p style='text-indent:20px;'>The new twofold algorithm can be used to compute <inline-formula><tex-math id=\"M9\">\\begin{document}$ 4 $\\end{document}</tex-math></inline-formula>-GLV decompositions on two classes of curves. First it gives a new and unified method to compute all <inline-formula><tex-math id=\"M10\">\\begin{document}$ 4 $\\end{document}</tex-math></inline-formula>-GLV decompositions on <inline-formula><tex-math id=\"M11\">\\begin{document}$ j $\\end{document}</tex-math></inline-formula>-invariant <inline-formula><tex-math id=\"M12\">\\begin{document}$ 0 $\\end{document}</tex-math></inline-formula> elliptic curves over <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\mathbb{F}_{p^2} $\\end{document}</tex-math></inline-formula>. Second it can be used to compute the <inline-formula><tex-math id=\"M14\">\\begin{document}$ 4 $\\end{document}</tex-math></inline-formula>-GLV decomposition on the Jacobian of the hyperelliptic curve defined as <inline-formula><tex-math id=\"M15\">\\begin{document}$ \\mathcal{C}/\\mathbb{F}_{p}:y^{2} = x^{6}+ax^{3}+b $\\end{document}</tex-math></inline-formula>, which has an endomorphism <inline-formula><tex-math id=\"M16\">\\begin{document}$ \\phi $\\end{document}</tex-math></inline-formula> with the characteristic equation <inline-formula><tex-math id=\"M17\">\\begin{document}$ \\phi^2+\\phi+1 = 0 $\\end{document}</tex-math></inline-formula> (hence <inline-formula><tex-math id=\"M18\">\\begin{document}$ \\mathbb{Z}[\\phi] = \\mathbb{Z}[\\omega] $\\end{document}</tex-math></inline-formula>). As far as we know, none of the previous algorithms can be used to compute the <inline-formula><tex-math id=\"M19\">\\begin{document}$ 4 $\\end{document}</tex-math></inline-formula>-GLV decomposition on the latter class of curves.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new twofold Cornacchia-type algorithm and its applications\",\"authors\":\"Bei Wang, Ouyang Yi, Songsong Li, Honggang Hu\",\"doi\":\"10.3934/amc.2021026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We focus on exploring more potential of Longa and Sica's algorithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions. The algorithm consists of two sub-algorithms, the first one in the ring of integers <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\mathbb{Z} $\\\\end{document}</tex-math></inline-formula> and the second one in the Gaussian integer ring <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\mathbb{Z}[i] $\\\\end{document}</tex-math></inline-formula>. We observe that <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\mathbb{Z}[i] $\\\\end{document}</tex-math></inline-formula> in the second sub-algorithm can be replaced by another Euclidean domain <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mathbb{Z}[\\\\omega] $\\\\end{document}</tex-math></inline-formula> <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ (\\\\omega = \\\\frac{-1+\\\\sqrt{-3}}{2}) $\\\\end{document}</tex-math></inline-formula>. As a consequence, we design a new twofold Cornacchia-type algorithm with a theoretic upper bound of output <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ C\\\\cdot n^{1/4} $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ C = \\\\frac{3+\\\\sqrt{3}}{2}\\\\sqrt{1+|r|+|s|} $\\\\end{document}</tex-math></inline-formula> with small values <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ r, s $\\\\end{document}</tex-math></inline-formula> given by the curves.</p><p style='text-indent:20px;'>The new twofold algorithm can be used to compute <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ 4 $\\\\end{document}</tex-math></inline-formula>-GLV decompositions on two classes of curves. First it gives a new and unified method to compute all <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ 4 $\\\\end{document}</tex-math></inline-formula>-GLV decompositions on <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ j $\\\\end{document}</tex-math></inline-formula>-invariant <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ 0 $\\\\end{document}</tex-math></inline-formula> elliptic curves over <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ \\\\mathbb{F}_{p^2} $\\\\end{document}</tex-math></inline-formula>. Second it can be used to compute the <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ 4 $\\\\end{document}</tex-math></inline-formula>-GLV decomposition on the Jacobian of the hyperelliptic curve defined as <inline-formula><tex-math id=\\\"M15\\\">\\\\begin{document}$ \\\\mathcal{C}/\\\\mathbb{F}_{p}:y^{2} = x^{6}+ax^{3}+b $\\\\end{document}</tex-math></inline-formula>, which has an endomorphism <inline-formula><tex-math id=\\\"M16\\\">\\\\begin{document}$ \\\\phi $\\\\end{document}</tex-math></inline-formula> with the characteristic equation <inline-formula><tex-math id=\\\"M17\\\">\\\\begin{document}$ \\\\phi^2+\\\\phi+1 = 0 $\\\\end{document}</tex-math></inline-formula> (hence <inline-formula><tex-math id=\\\"M18\\\">\\\\begin{document}$ \\\\mathbb{Z}[\\\\phi] = \\\\mathbb{Z}[\\\\omega] $\\\\end{document}</tex-math></inline-formula>). As far as we know, none of the previous algorithms can be used to compute the <inline-formula><tex-math id=\\\"M19\\\">\\\\begin{document}$ 4 $\\\\end{document}</tex-math></inline-formula>-GLV decomposition on the latter class of curves.</p>\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/amc.2021026\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2021026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
摘要
We focus on exploring more potential of Longa and Sica's algorithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions. The algorithm consists of two sub-algorithms, the first one in the ring of integers \begin{document}$ \mathbb{Z} $\end{document} and the second one in the Gaussian integer ring \begin{document}$ \mathbb{Z}[i] $\end{document}. We observe that \begin{document}$ \mathbb{Z}[i] $\end{document} in the second sub-algorithm can be replaced by another Euclidean domain \begin{document}$ \mathbb{Z}[\omega] $\end{document} \begin{document}$ (\omega = \frac{-1+\sqrt{-3}}{2}) $\end{document}. As a consequence, we design a new twofold Cornacchia-type algorithm with a theoretic upper bound of output \begin{document}$ C\cdot n^{1/4} $\end{document}, where \begin{document}$ C = \frac{3+\sqrt{3}}{2}\sqrt{1+|r|+|s|} $\end{document} with small values \begin{document}$ r, s $\end{document} given by the curves.The new twofold algorithm can be used to compute \begin{document}$ 4 $\end{document}-GLV decompositions on two classes of curves. First it gives a new and unified method to compute all \begin{document}$ 4 $\end{document}-GLV decompositions on \begin{document}$ j $\end{document}-invariant \begin{document}$ 0 $\end{document} elliptic curves over \begin{document}$ \mathbb{F}_{p^2} $\end{document}. Second it can be used to compute the \begin{document}$ 4 $\end{document}-GLV decomposition on the Jacobian of the hyperelliptic curve defined as \begin{document}$ \mathcal{C}/\mathbb{F}_{p}:y^{2} = x^{6}+ax^{3}+b $\end{document}, which has an endomorphism \begin{document}$ \phi $\end{document} with the characteristic equation \begin{document}$ \phi^2+\phi+1 = 0 $\end{document} (hence \begin{document}$ \mathbb{Z}[\phi] = \mathbb{Z}[\omega] $\end{document}). As far as we know, none of the previous algorithms can be used to compute the \begin{document}$ 4 $\end{document}-GLV decomposition on the latter class of curves.
A new twofold Cornacchia-type algorithm and its applications
We focus on exploring more potential of Longa and Sica's algorithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions. The algorithm consists of two sub-algorithms, the first one in the ring of integers \begin{document}$ \mathbb{Z} $\end{document} and the second one in the Gaussian integer ring \begin{document}$ \mathbb{Z}[i] $\end{document}. We observe that \begin{document}$ \mathbb{Z}[i] $\end{document} in the second sub-algorithm can be replaced by another Euclidean domain \begin{document}$ \mathbb{Z}[\omega] $\end{document}\begin{document}$ (\omega = \frac{-1+\sqrt{-3}}{2}) $\end{document}. As a consequence, we design a new twofold Cornacchia-type algorithm with a theoretic upper bound of output \begin{document}$ C\cdot n^{1/4} $\end{document}, where \begin{document}$ C = \frac{3+\sqrt{3}}{2}\sqrt{1+|r|+|s|} $\end{document} with small values \begin{document}$ r, s $\end{document} given by the curves.
The new twofold algorithm can be used to compute \begin{document}$ 4 $\end{document}-GLV decompositions on two classes of curves. First it gives a new and unified method to compute all \begin{document}$ 4 $\end{document}-GLV decompositions on \begin{document}$ j $\end{document}-invariant \begin{document}$ 0 $\end{document} elliptic curves over \begin{document}$ \mathbb{F}_{p^2} $\end{document}. Second it can be used to compute the \begin{document}$ 4 $\end{document}-GLV decomposition on the Jacobian of the hyperelliptic curve defined as \begin{document}$ \mathcal{C}/\mathbb{F}_{p}:y^{2} = x^{6}+ax^{3}+b $\end{document}, which has an endomorphism \begin{document}$ \phi $\end{document} with the characteristic equation \begin{document}$ \phi^2+\phi+1 = 0 $\end{document} (hence \begin{document}$ \mathbb{Z}[\phi] = \mathbb{Z}[\omega] $\end{document}). As far as we know, none of the previous algorithms can be used to compute the \begin{document}$ 4 $\end{document}-GLV decomposition on the latter class of curves.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.