无扭转ti群的分类

IF 0.4 4区 数学 Q4 MATHEMATICS
R. Andruszkiewicz, M. Woronowicz
{"title":"无扭转ti群的分类","authors":"R. Andruszkiewicz, M. Woronowicz","doi":"10.1142/s1005386722000414","DOIUrl":null,"url":null,"abstract":"An abelian group [Formula: see text] is called a [Formula: see text]-group if every associative ring with the additive group [Formula: see text] is filial. The filiality of a ring [Formula: see text] means that the ring [Formula: see text] is associative and all ideals of any ideal of [Formula: see text] are ideals in [Formula: see text]. In this paper, torsion-free [Formula: see text]-groups are described up to the structure of associative nil groups. It is also proved that, for torsion-free abelian groups that are not associative nil, the condition [Formula: see text] implies the indecomposability and homogeneity. The paper contains constructions of [Formula: see text] such groups of any rank from 2 to[Formula: see text] which are pairwise non-isomorphic.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"38 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Classification of Torsion-free TI-Groups\",\"authors\":\"R. Andruszkiewicz, M. Woronowicz\",\"doi\":\"10.1142/s1005386722000414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An abelian group [Formula: see text] is called a [Formula: see text]-group if every associative ring with the additive group [Formula: see text] is filial. The filiality of a ring [Formula: see text] means that the ring [Formula: see text] is associative and all ideals of any ideal of [Formula: see text] are ideals in [Formula: see text]. In this paper, torsion-free [Formula: see text]-groups are described up to the structure of associative nil groups. It is also proved that, for torsion-free abelian groups that are not associative nil, the condition [Formula: see text] implies the indecomposability and homogeneity. The paper contains constructions of [Formula: see text] such groups of any rank from 2 to[Formula: see text] which are pairwise non-isomorphic.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000414\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000414","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果与加性群(公式:见文)相结合的每个环都是子环,则一个阿贝尔群(公式:见文)称为[公式:见文]群。环[公式:见文]的亲缘性意味着环[公式:见文]是结合的,并且[公式:见文]的任何理想的所有理想都是[公式:见文]中的理想。本文描述了无扭[公式:见文]-群直至结合型零群的结构。还证明了,对于非关联零的无扭阿贝尔群,条件[公式:见文]暗示了不可分解性和齐性。本文包含了[公式:见文]从2到[公式:见文]的任意秩的对非同构群的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Classification of Torsion-free TI-Groups
An abelian group [Formula: see text] is called a [Formula: see text]-group if every associative ring with the additive group [Formula: see text] is filial. The filiality of a ring [Formula: see text] means that the ring [Formula: see text] is associative and all ideals of any ideal of [Formula: see text] are ideals in [Formula: see text]. In this paper, torsion-free [Formula: see text]-groups are described up to the structure of associative nil groups. It is also proved that, for torsion-free abelian groups that are not associative nil, the condition [Formula: see text] implies the indecomposability and homogeneity. The paper contains constructions of [Formula: see text] such groups of any rank from 2 to[Formula: see text] which are pairwise non-isomorphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信