gromov - piatetski - shapiro格同构的细亚群

Samuel A. Ballas
{"title":"gromov - piatetski - shapiro格同构的细亚群","authors":"Samuel A. Ballas","doi":"10.2140/PJM.2020.309.257","DOIUrl":null,"url":null,"abstract":"In this paper we produce many examples of thin subgroups of special linear groups that are isomorphic to the fundamental groups of non-arithmetic hyperbolic manifolds. Specifically, we show that the non-arithmetic lattices in $\\mathrm{SO}(n,1)$ constructed by Gromov and Piateski-Shapiro can be embedded into $\\mathrm{SL}_{n+1}(\\mathbb{R})$ so that their images are thin subgroups","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin subgroups isomorphic to\\nGromov–Piatetski-Shapiro lattices\",\"authors\":\"Samuel A. Ballas\",\"doi\":\"10.2140/PJM.2020.309.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we produce many examples of thin subgroups of special linear groups that are isomorphic to the fundamental groups of non-arithmetic hyperbolic manifolds. Specifically, we show that the non-arithmetic lattices in $\\\\mathrm{SO}(n,1)$ constructed by Gromov and Piateski-Shapiro can be embedded into $\\\\mathrm{SL}_{n+1}(\\\\mathbb{R})$ so that their images are thin subgroups\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/PJM.2020.309.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PJM.2020.309.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了与非算术双曲流形基本群同构的特殊线性群的瘦子群的许多例子。具体来说,我们证明了由Gromov和Piateski-Shapiro构造的$\ mathm {SO}(n,1)$中的非算术格可以嵌入到$\ mathm {SL}_{n+1}(\mathbb{R})$中,从而使它们的图像成为瘦子群
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thin subgroups isomorphic to Gromov–Piatetski-Shapiro lattices
In this paper we produce many examples of thin subgroups of special linear groups that are isomorphic to the fundamental groups of non-arithmetic hyperbolic manifolds. Specifically, we show that the non-arithmetic lattices in $\mathrm{SO}(n,1)$ constructed by Gromov and Piateski-Shapiro can be embedded into $\mathrm{SL}_{n+1}(\mathbb{R})$ so that their images are thin subgroups
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信