{"title":"具有交易成本和功率效用函数的离散时间投资组合选择:扰动分析","authors":"Gary Quek, C. Atkinson","doi":"10.1080/1350486X.2017.1342551","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we study a multi-period portfolio selection model in which a generic class of probability distributions is assumed for the returns of the risky asset. An investor with a power utility function rebalances a portfolio comprising a risk-free and risky asset at the beginning of each time period in order to maximize expected utility of terminal wealth. Trading the risky asset incurs a cost that is proportional to the value of the transaction. At each time period, the optimal investment strategy involves buying or selling the risky asset to reach the boundaries of a certain no-transaction region. In the limit of small transaction costs, dynamic programming and perturbation analysis are applied to obtain explicit approximations to the optimal boundaries and optimal value function of the portfolio at each stage of a multi-period investment process of any length.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Portfolio selection in discrete time with transaction costs and power utility function: a perturbation analysis\",\"authors\":\"Gary Quek, C. Atkinson\",\"doi\":\"10.1080/1350486X.2017.1342551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, we study a multi-period portfolio selection model in which a generic class of probability distributions is assumed for the returns of the risky asset. An investor with a power utility function rebalances a portfolio comprising a risk-free and risky asset at the beginning of each time period in order to maximize expected utility of terminal wealth. Trading the risky asset incurs a cost that is proportional to the value of the transaction. At each time period, the optimal investment strategy involves buying or selling the risky asset to reach the boundaries of a certain no-transaction region. In the limit of small transaction costs, dynamic programming and perturbation analysis are applied to obtain explicit approximations to the optimal boundaries and optimal value function of the portfolio at each stage of a multi-period investment process of any length.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2017.1342551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2017.1342551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Portfolio selection in discrete time with transaction costs and power utility function: a perturbation analysis
ABSTRACT In this article, we study a multi-period portfolio selection model in which a generic class of probability distributions is assumed for the returns of the risky asset. An investor with a power utility function rebalances a portfolio comprising a risk-free and risky asset at the beginning of each time period in order to maximize expected utility of terminal wealth. Trading the risky asset incurs a cost that is proportional to the value of the transaction. At each time period, the optimal investment strategy involves buying or selling the risky asset to reach the boundaries of a certain no-transaction region. In the limit of small transaction costs, dynamic programming and perturbation analysis are applied to obtain explicit approximations to the optimal boundaries and optimal value function of the portfolio at each stage of a multi-period investment process of any length.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.