具有交易成本和功率效用函数的离散时间投资组合选择:扰动分析

Q3 Mathematics
Gary Quek, C. Atkinson
{"title":"具有交易成本和功率效用函数的离散时间投资组合选择:扰动分析","authors":"Gary Quek, C. Atkinson","doi":"10.1080/1350486X.2017.1342551","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we study a multi-period portfolio selection model in which a generic class of probability distributions is assumed for the returns of the risky asset. An investor with a power utility function rebalances a portfolio comprising a risk-free and risky asset at the beginning of each time period in order to maximize expected utility of terminal wealth. Trading the risky asset incurs a cost that is proportional to the value of the transaction. At each time period, the optimal investment strategy involves buying or selling the risky asset to reach the boundaries of a certain no-transaction region. In the limit of small transaction costs, dynamic programming and perturbation analysis are applied to obtain explicit approximations to the optimal boundaries and optimal value function of the portfolio at each stage of a multi-period investment process of any length.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"22 1","pages":"111 - 77"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Portfolio selection in discrete time with transaction costs and power utility function: a perturbation analysis\",\"authors\":\"Gary Quek, C. Atkinson\",\"doi\":\"10.1080/1350486X.2017.1342551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, we study a multi-period portfolio selection model in which a generic class of probability distributions is assumed for the returns of the risky asset. An investor with a power utility function rebalances a portfolio comprising a risk-free and risky asset at the beginning of each time period in order to maximize expected utility of terminal wealth. Trading the risky asset incurs a cost that is proportional to the value of the transaction. At each time period, the optimal investment strategy involves buying or selling the risky asset to reach the boundaries of a certain no-transaction region. In the limit of small transaction costs, dynamic programming and perturbation analysis are applied to obtain explicit approximations to the optimal boundaries and optimal value function of the portfolio at each stage of a multi-period investment process of any length.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"22 1\",\"pages\":\"111 - 77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2017.1342551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2017.1342551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文研究了一个多周期投资组合选择模型,该模型假设风险资产的收益具有一类一般的概率分布。具有功率效用函数的投资者在每个时间段开始时重新平衡由无风险资产和风险资产组成的投资组合,以最大化终端财富的预期效用。交易风险资产所产生的成本与交易价值成正比。在每个时间段,最优投资策略包括买入或卖出风险资产以达到某个无交易区域的边界。在交易费用较小的情况下,应用动态规划和摄动分析方法,得到任意长度的多周期投资过程中各阶段的最优边界和最优价值函数的显式逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio selection in discrete time with transaction costs and power utility function: a perturbation analysis
ABSTRACT In this article, we study a multi-period portfolio selection model in which a generic class of probability distributions is assumed for the returns of the risky asset. An investor with a power utility function rebalances a portfolio comprising a risk-free and risky asset at the beginning of each time period in order to maximize expected utility of terminal wealth. Trading the risky asset incurs a cost that is proportional to the value of the transaction. At each time period, the optimal investment strategy involves buying or selling the risky asset to reach the boundaries of a certain no-transaction region. In the limit of small transaction costs, dynamic programming and perturbation analysis are applied to obtain explicit approximations to the optimal boundaries and optimal value function of the portfolio at each stage of a multi-period investment process of any length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信