基于微ct扫描的骨小梁合成图像的生成

Inf. Comput. Pub Date : 2023-07-01 DOI:10.3390/info14070375
Jonas Grande-Barreto, Eduardo Polanco-Castro, H. Peregrina-Barreto, Eduardo Rosas-Mialma, Carmina Puig-Mar
{"title":"基于微ct扫描的骨小梁合成图像的生成","authors":"Jonas Grande-Barreto, Eduardo Polanco-Castro, H. Peregrina-Barreto, Eduardo Rosas-Mialma, Carmina Puig-Mar","doi":"10.3390/info14070375","DOIUrl":null,"url":null,"abstract":"Creating synthetic images of trabecular tissue provides an alternative for researchers to validate algorithms designed to study trabecular bone. Developing synthetic images requires baseline data, such as datasets of digital biological samples or templates, often unavailable due to privacy restrictions. Even when this baseline is available, the standard procedure combines the information to generate a single template as a starting point, reducing the variability in the generated synthetic images. This work proposes a methodology for building synthetic images of trabecular bone structure, creating a 3D network that simulates it. Next, the technical characteristics of the micro-CT scanner, the biomechanical properties of trabecular bones, and the physics of the imaging process to produce a synthetic image are simulated. The proposed methodology does not require biological samples, datasets, or templates to generate synthetic images. Since each synthetic image built is unique, the methodology is enabled to generate a vast number of synthetic images, useful in the performance comparison of algorithms under different imaging conditions. The created synthetic images were assessed using microarchitecture parameters of reference, and experimental results provided evidence that the obtained values match approaches requiring initial data. The scope of this methodology covers research aspects related to using synthetic images in further biomedical research or the development of educational training tools to understand the medical image.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generation of Synthetic Images of Trabecular Bone Based on Micro-CT Scans\",\"authors\":\"Jonas Grande-Barreto, Eduardo Polanco-Castro, H. Peregrina-Barreto, Eduardo Rosas-Mialma, Carmina Puig-Mar\",\"doi\":\"10.3390/info14070375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating synthetic images of trabecular tissue provides an alternative for researchers to validate algorithms designed to study trabecular bone. Developing synthetic images requires baseline data, such as datasets of digital biological samples or templates, often unavailable due to privacy restrictions. Even when this baseline is available, the standard procedure combines the information to generate a single template as a starting point, reducing the variability in the generated synthetic images. This work proposes a methodology for building synthetic images of trabecular bone structure, creating a 3D network that simulates it. Next, the technical characteristics of the micro-CT scanner, the biomechanical properties of trabecular bones, and the physics of the imaging process to produce a synthetic image are simulated. The proposed methodology does not require biological samples, datasets, or templates to generate synthetic images. Since each synthetic image built is unique, the methodology is enabled to generate a vast number of synthetic images, useful in the performance comparison of algorithms under different imaging conditions. The created synthetic images were assessed using microarchitecture parameters of reference, and experimental results provided evidence that the obtained values match approaches requiring initial data. The scope of this methodology covers research aspects related to using synthetic images in further biomedical research or the development of educational training tools to understand the medical image.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14070375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

创建小梁组织的合成图像为研究人员提供了另一种方法来验证设计用于研究小梁骨的算法。开发合成图像需要基线数据,例如数字生物样本或模板的数据集,这些数据通常由于隐私限制而不可用。即使这个基线是可用的,标准过程也会将这些信息组合起来,以生成单个模板作为起点,从而减少生成的合成图像中的可变性。这项工作提出了一种方法来建立小梁骨结构的合成图像,创建一个3D网络来模拟它。接下来,模拟了微型ct扫描仪的技术特点、小梁骨的生物力学特性以及生成合成图像的成像过程的物理原理。所提出的方法不需要生物样本、数据集或模板来生成合成图像。由于构建的每个合成图像都是独一无二的,因此该方法能够生成大量的合成图像,有助于在不同成像条件下比较算法的性能。利用参考的微架构参数对合成图像进行了评估,实验结果表明,得到的值与需要初始数据的方法相匹配。这种方法的范围涵盖了与在进一步的生物医学研究中使用合成图像或开发教育培训工具以理解医学图像相关的研究方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of Synthetic Images of Trabecular Bone Based on Micro-CT Scans
Creating synthetic images of trabecular tissue provides an alternative for researchers to validate algorithms designed to study trabecular bone. Developing synthetic images requires baseline data, such as datasets of digital biological samples or templates, often unavailable due to privacy restrictions. Even when this baseline is available, the standard procedure combines the information to generate a single template as a starting point, reducing the variability in the generated synthetic images. This work proposes a methodology for building synthetic images of trabecular bone structure, creating a 3D network that simulates it. Next, the technical characteristics of the micro-CT scanner, the biomechanical properties of trabecular bones, and the physics of the imaging process to produce a synthetic image are simulated. The proposed methodology does not require biological samples, datasets, or templates to generate synthetic images. Since each synthetic image built is unique, the methodology is enabled to generate a vast number of synthetic images, useful in the performance comparison of algorithms under different imaging conditions. The created synthetic images were assessed using microarchitecture parameters of reference, and experimental results provided evidence that the obtained values match approaches requiring initial data. The scope of this methodology covers research aspects related to using synthetic images in further biomedical research or the development of educational training tools to understand the medical image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信