基于hadoop的网络舆情分析模型及其实现

Fei Wang, Peiyu Liu, Zhenfang Zhu
{"title":"基于hadoop的网络舆情分析模型及其实现","authors":"Fei Wang, Peiyu Liu, Zhenfang Zhu","doi":"10.1117/12.2502133","DOIUrl":null,"url":null,"abstract":"In order to perform network public opinion mining effectively, this paper proposes a Hadoop-based network public opinion analysis model, which applies HDFS file service system to store massive network data distributed, providing fault tolerance and reliability assurance; As the traditional K-means clustering method is too inefficient to process massive data during the clustering process, this paper adopts MapReduce-based K-means distributed topic clustering computation method to process the massive public opinion information through multi-computer cooperation efficiently; And to obtain the information of hot network public opinion in a certain period of time by the analysis of topic heat, and verify the effectiveness of the proposed method by experiments.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hadoop-based analysis model of network public opinion and its implementation\",\"authors\":\"Fei Wang, Peiyu Liu, Zhenfang Zhu\",\"doi\":\"10.1117/12.2502133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to perform network public opinion mining effectively, this paper proposes a Hadoop-based network public opinion analysis model, which applies HDFS file service system to store massive network data distributed, providing fault tolerance and reliability assurance; As the traditional K-means clustering method is too inefficient to process massive data during the clustering process, this paper adopts MapReduce-based K-means distributed topic clustering computation method to process the massive public opinion information through multi-computer cooperation efficiently; And to obtain the information of hot network public opinion in a certain period of time by the analysis of topic heat, and verify the effectiveness of the proposed method by experiments.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2502133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2502133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了有效地进行网络舆情挖掘,本文提出了一种基于hadoop的网络舆情分析模型,该模型采用HDFS文件服务系统分布式存储海量网络数据,提供容错和可靠性保证;针对传统的K-means聚类方法在聚类过程中处理海量数据效率太低的问题,本文采用基于mapreduce的K-means分布式主题聚类计算方法,通过多机协同高效处理海量舆情信息;并通过对话题热度的分析,获取一定时间内的热点网络舆情信息,通过实验验证所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hadoop-based analysis model of network public opinion and its implementation
In order to perform network public opinion mining effectively, this paper proposes a Hadoop-based network public opinion analysis model, which applies HDFS file service system to store massive network data distributed, providing fault tolerance and reliability assurance; As the traditional K-means clustering method is too inefficient to process massive data during the clustering process, this paper adopts MapReduce-based K-means distributed topic clustering computation method to process the massive public opinion information through multi-computer cooperation efficiently; And to obtain the information of hot network public opinion in a certain period of time by the analysis of topic heat, and verify the effectiveness of the proposed method by experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信