{"title":"隧道施工中的粉尘和气体暴露。","authors":"B. Bakke, P. Stewart, B. Ulvestad, W. Eduard","doi":"10.1080/15298660108984647","DOIUrl":null,"url":null,"abstract":"Personal exposures to dust and gases were measured among 189 underground construction workers who were divided into seven occupational groups performing similar tasks in similar working conditions: drill and blast crew; shaft-drilling crew; tunnel-boring machine crew; shotcreting operators; support workers; concrete workers; and electricians. Outdoor tunnel workers were included as a low-exposed reference group. The highest geometric mean (GM) exposures to total dust (6-7 mg/m3) and respirable dust (2-3 mg/m3) were found for the shotcreters, shaft drillers, and tunnel-boring machine workers. Shaft drillers and tunnel-boring machine workers also had the highest GM exposures to respirable alpha-quartz (0.3-0.4 mg/m3), which exceeded the Norwegian occupational exposure limit (OEL) of 0.1 mg/m3. Shaft drillers had the highest exposure to oil mists (GM=1.4 mg/m3), which was generated mainly from pneumatic drilling. For other groups, exposure to oil mist from diesel exhaust and spraying of oil onto concrete forms resulted in exposures of 0.1-0.5 mg/m3. Exposure to nitrogen dioxide was similar across all groups (GM=0.4-0.9 ppm), except for shaft drillers and tunnel-boring machine workers, who had lower exposures. High short-term exposures (>10 ppm), however, occurred when workers were passing through the blasting cloud.","PeriodicalId":7449,"journal":{"name":"AIHAJ : a journal for the science of occupational and environmental health and safety","volume":"39 1","pages":"457-65"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Dust and gas exposure in tunnel construction work.\",\"authors\":\"B. Bakke, P. Stewart, B. Ulvestad, W. Eduard\",\"doi\":\"10.1080/15298660108984647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal exposures to dust and gases were measured among 189 underground construction workers who were divided into seven occupational groups performing similar tasks in similar working conditions: drill and blast crew; shaft-drilling crew; tunnel-boring machine crew; shotcreting operators; support workers; concrete workers; and electricians. Outdoor tunnel workers were included as a low-exposed reference group. The highest geometric mean (GM) exposures to total dust (6-7 mg/m3) and respirable dust (2-3 mg/m3) were found for the shotcreters, shaft drillers, and tunnel-boring machine workers. Shaft drillers and tunnel-boring machine workers also had the highest GM exposures to respirable alpha-quartz (0.3-0.4 mg/m3), which exceeded the Norwegian occupational exposure limit (OEL) of 0.1 mg/m3. Shaft drillers had the highest exposure to oil mists (GM=1.4 mg/m3), which was generated mainly from pneumatic drilling. For other groups, exposure to oil mist from diesel exhaust and spraying of oil onto concrete forms resulted in exposures of 0.1-0.5 mg/m3. Exposure to nitrogen dioxide was similar across all groups (GM=0.4-0.9 ppm), except for shaft drillers and tunnel-boring machine workers, who had lower exposures. High short-term exposures (>10 ppm), however, occurred when workers were passing through the blasting cloud.\",\"PeriodicalId\":7449,\"journal\":{\"name\":\"AIHAJ : a journal for the science of occupational and environmental health and safety\",\"volume\":\"39 1\",\"pages\":\"457-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIHAJ : a journal for the science of occupational and environmental health and safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15298660108984647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIHAJ : a journal for the science of occupational and environmental health and safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15298660108984647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dust and gas exposure in tunnel construction work.
Personal exposures to dust and gases were measured among 189 underground construction workers who were divided into seven occupational groups performing similar tasks in similar working conditions: drill and blast crew; shaft-drilling crew; tunnel-boring machine crew; shotcreting operators; support workers; concrete workers; and electricians. Outdoor tunnel workers were included as a low-exposed reference group. The highest geometric mean (GM) exposures to total dust (6-7 mg/m3) and respirable dust (2-3 mg/m3) were found for the shotcreters, shaft drillers, and tunnel-boring machine workers. Shaft drillers and tunnel-boring machine workers also had the highest GM exposures to respirable alpha-quartz (0.3-0.4 mg/m3), which exceeded the Norwegian occupational exposure limit (OEL) of 0.1 mg/m3. Shaft drillers had the highest exposure to oil mists (GM=1.4 mg/m3), which was generated mainly from pneumatic drilling. For other groups, exposure to oil mist from diesel exhaust and spraying of oil onto concrete forms resulted in exposures of 0.1-0.5 mg/m3. Exposure to nitrogen dioxide was similar across all groups (GM=0.4-0.9 ppm), except for shaft drillers and tunnel-boring machine workers, who had lower exposures. High short-term exposures (>10 ppm), however, occurred when workers were passing through the blasting cloud.