使用自适应采样和插值的参数化降阶模型

J. Borggaard, Kevin R. Pond, L. Zietsman
{"title":"使用自适应采样和插值的参数化降阶模型","authors":"J. Borggaard, Kevin R. Pond, L. Zietsman","doi":"10.3182/20140824-6-ZA-1003.02664","DOIUrl":null,"url":null,"abstract":"Abstract Over the past decade, a number of approaches have been put forth to improve the accuracy of projection-based reduced order models over parameter ranges. These can be classified as either i.) building a global basis that is suitable for a large parameter set by applying sampling strategies, ii.) identifying parameter dependent coefficient functions in the reduced order model, or iii.) changing the basis as parameters change. We propose a strategy that combines sampling with basis interpolation. We apply sampling strategies that identify suitable parameter values from which associated basis functions are interpolated at any parameter value in a region. While our approach has practical limits to roughly a handful of parameters, it has the advantage of achieving a desired level of accuracy in parametric reduced-order models of relatively small size. We present this method using a proper orthogonal decomposition model of a nonlinear partial differential equation with variable coefficients and initial conditions.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"34 1","pages":"7773-7778"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parametric Reduced Order Models Using Adaptive Sampling and Interpolation\",\"authors\":\"J. Borggaard, Kevin R. Pond, L. Zietsman\",\"doi\":\"10.3182/20140824-6-ZA-1003.02664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Over the past decade, a number of approaches have been put forth to improve the accuracy of projection-based reduced order models over parameter ranges. These can be classified as either i.) building a global basis that is suitable for a large parameter set by applying sampling strategies, ii.) identifying parameter dependent coefficient functions in the reduced order model, or iii.) changing the basis as parameters change. We propose a strategy that combines sampling with basis interpolation. We apply sampling strategies that identify suitable parameter values from which associated basis functions are interpolated at any parameter value in a region. While our approach has practical limits to roughly a handful of parameters, it has the advantage of achieving a desired level of accuracy in parametric reduced-order models of relatively small size. We present this method using a proper orthogonal decomposition model of a nonlinear partial differential equation with variable coefficients and initial conditions.\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"34 1\",\"pages\":\"7773-7778\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20140824-6-ZA-1003.02664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.02664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在过去的十年里,人们提出了许多方法来提高基于投影的降阶模型在参数范围内的精度。这些可以被分类为i.)通过应用采样策略建立一个适用于大参数集的全局基,ii.)在降阶模型中识别参数相关系数函数,或iii.)随着参数的变化而改变基。我们提出了一种将采样与基插值相结合的策略。我们采用采样策略来识别合适的参数值,从这些参数值中插值出相关的基函数。虽然我们的方法对几个参数有实际限制,但它的优点是在相对较小的参数化降阶模型中达到所需的精度水平。本文利用变系数和初始条件的非线性偏微分方程的适当正交分解模型,给出了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric Reduced Order Models Using Adaptive Sampling and Interpolation
Abstract Over the past decade, a number of approaches have been put forth to improve the accuracy of projection-based reduced order models over parameter ranges. These can be classified as either i.) building a global basis that is suitable for a large parameter set by applying sampling strategies, ii.) identifying parameter dependent coefficient functions in the reduced order model, or iii.) changing the basis as parameters change. We propose a strategy that combines sampling with basis interpolation. We apply sampling strategies that identify suitable parameter values from which associated basis functions are interpolated at any parameter value in a region. While our approach has practical limits to roughly a handful of parameters, it has the advantage of achieving a desired level of accuracy in parametric reduced-order models of relatively small size. We present this method using a proper orthogonal decomposition model of a nonlinear partial differential equation with variable coefficients and initial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信