追踪追踪者

Zhonghao Yu, S. Macbeth, Konark Modi, J. M. Pujol
{"title":"追踪追踪者","authors":"Zhonghao Yu, S. Macbeth, Konark Modi, J. M. Pujol","doi":"10.1145/2872427.2883028","DOIUrl":null,"url":null,"abstract":"Online tracking poses a serious privacy challenge that has drawn significant attention in both academia and industry. Existing approaches for preventing user tracking, based on curated blocklists, suffer from limited coverage and coarse-grained resolution for classification, rely on exceptions that impact sites' functionality and appearance, and require significant manual maintenance. In this paper we propose a novel approach, based on the concepts leveraged from $k$-Anonymity, in which users collectively identify unsafe data elements, which have the potential to identify uniquely an individual user, and remove them from requests. We deployed our system to 200,000 German users running the Cliqz Browser or the Cliqz Firefox extension to evaluate its efficiency and feasibility. Results indicate that our approach achieves better privacy protection than blocklists, as provided by Disconnect, while keeping the site breakage to a minimum, even lower than the community-optimized AdBlock Plus. We also provide evidence of the prevalence and reach of trackers to over 21 million pages of 350,000 unique sites, the largest scale empirical evaluation to date. 95% of the pages visited contain 3rd party requests to potential trackers and 78% attempt to transfer unsafe data. Tracker organizations are also ranked, showing that a single organization can reach up to 42% of all page visits in Germany.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Tracking the Trackers\",\"authors\":\"Zhonghao Yu, S. Macbeth, Konark Modi, J. M. Pujol\",\"doi\":\"10.1145/2872427.2883028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online tracking poses a serious privacy challenge that has drawn significant attention in both academia and industry. Existing approaches for preventing user tracking, based on curated blocklists, suffer from limited coverage and coarse-grained resolution for classification, rely on exceptions that impact sites' functionality and appearance, and require significant manual maintenance. In this paper we propose a novel approach, based on the concepts leveraged from $k$-Anonymity, in which users collectively identify unsafe data elements, which have the potential to identify uniquely an individual user, and remove them from requests. We deployed our system to 200,000 German users running the Cliqz Browser or the Cliqz Firefox extension to evaluate its efficiency and feasibility. Results indicate that our approach achieves better privacy protection than blocklists, as provided by Disconnect, while keeping the site breakage to a minimum, even lower than the community-optimized AdBlock Plus. We also provide evidence of the prevalence and reach of trackers to over 21 million pages of 350,000 unique sites, the largest scale empirical evaluation to date. 95% of the pages visited contain 3rd party requests to potential trackers and 78% attempt to transfer unsafe data. Tracker organizations are also ranked, showing that a single organization can reach up to 42% of all page visits in Germany.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2883028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

在线跟踪带来了严重的隐私挑战,引起了学术界和工业界的极大关注。现有的防止用户跟踪的方法是基于精心策划的块列表的,这些方法的覆盖范围有限,分类分辨率较粗,依赖于影响站点功能和外观的异常,并且需要大量的人工维护。在本文中,我们提出了一种新颖的方法,基于从$k$-匿名中利用的概念,其中用户集体识别不安全的数据元素,这些元素有可能唯一地标识单个用户,并从请求中删除它们。我们将我们的系统部署到20万运行Cliqz浏览器或Cliqz Firefox扩展的德国用户中,以评估其效率和可行性。结果表明,我们的方法比Disconnect提供的封锁列表实现了更好的隐私保护,同时将网站破坏降至最低,甚至低于社区优化的AdBlock Plus。我们还提供了证据,证明了跟踪器的普遍性和覆盖范围,涵盖了35万个独立网站的2100多万页,这是迄今为止规模最大的实证评估。95%的访问页面包含第三方对潜在跟踪器的请求,78%的页面试图传输不安全的数据。跟踪组织也进行了排名,显示单个组织可以达到德国所有页面访问量的42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking the Trackers
Online tracking poses a serious privacy challenge that has drawn significant attention in both academia and industry. Existing approaches for preventing user tracking, based on curated blocklists, suffer from limited coverage and coarse-grained resolution for classification, rely on exceptions that impact sites' functionality and appearance, and require significant manual maintenance. In this paper we propose a novel approach, based on the concepts leveraged from $k$-Anonymity, in which users collectively identify unsafe data elements, which have the potential to identify uniquely an individual user, and remove them from requests. We deployed our system to 200,000 German users running the Cliqz Browser or the Cliqz Firefox extension to evaluate its efficiency and feasibility. Results indicate that our approach achieves better privacy protection than blocklists, as provided by Disconnect, while keeping the site breakage to a minimum, even lower than the community-optimized AdBlock Plus. We also provide evidence of the prevalence and reach of trackers to over 21 million pages of 350,000 unique sites, the largest scale empirical evaluation to date. 95% of the pages visited contain 3rd party requests to potential trackers and 78% attempt to transfer unsafe data. Tracker organizations are also ranked, showing that a single organization can reach up to 42% of all page visits in Germany.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信