运动特征提取的弱稳定性研究

Dennis Park, C. L. Zitnick, Deva Ramanan, Piotr Dollár
{"title":"运动特征提取的弱稳定性研究","authors":"Dennis Park, C. L. Zitnick, Deva Ramanan, Piotr Dollár","doi":"10.1109/CVPR.2013.371","DOIUrl":null,"url":null,"abstract":"We describe novel but simple motion features for the problem of detecting objects in video sequences. Previous approaches either compute optical flow or temporal differences on video frame pairs with various assumptions about stabilization. We describe a combined approach that uses coarse-scale flow and fine-scale temporal difference features. Our approach performs weak motion stabilization by factoring out camera motion and coarse object motion while preserving nonrigid motions that serve as useful cues for recognition. We show results for pedestrian detection and human pose estimation in video sequences, achieving state-of-the-art results in both. In particular, given a fixed detection rate our method achieves a five-fold reduction in false positives over prior art on the Caltech Pedestrian benchmark. Finally, we perform extensive diagnostic experiments to reveal what aspects of our system are crucial for good performance. Proper stabilization, long time-scale features, and proper normalization are all critical.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"154 1","pages":"2882-2889"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"139","resultStr":"{\"title\":\"Exploring Weak Stabilization for Motion Feature Extraction\",\"authors\":\"Dennis Park, C. L. Zitnick, Deva Ramanan, Piotr Dollár\",\"doi\":\"10.1109/CVPR.2013.371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe novel but simple motion features for the problem of detecting objects in video sequences. Previous approaches either compute optical flow or temporal differences on video frame pairs with various assumptions about stabilization. We describe a combined approach that uses coarse-scale flow and fine-scale temporal difference features. Our approach performs weak motion stabilization by factoring out camera motion and coarse object motion while preserving nonrigid motions that serve as useful cues for recognition. We show results for pedestrian detection and human pose estimation in video sequences, achieving state-of-the-art results in both. In particular, given a fixed detection rate our method achieves a five-fold reduction in false positives over prior art on the Caltech Pedestrian benchmark. Finally, we perform extensive diagnostic experiments to reveal what aspects of our system are crucial for good performance. Proper stabilization, long time-scale features, and proper normalization are all critical.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"154 1\",\"pages\":\"2882-2889\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"139\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 139

摘要

我们描述了一种新颖而简单的运动特征来解决视频序列中物体的检测问题。以前的方法要么计算光流,要么计算视频帧对的时间差异,并对稳定化进行各种假设。我们描述了一种使用粗尺度流量和精细尺度时间差异特征的组合方法。我们的方法通过分解相机运动和粗物体运动来实现弱运动稳定,同时保留非刚性运动,作为有用的识别线索。我们展示了视频序列中行人检测和人体姿态估计的结果,在这两方面都取得了最先进的结果。特别是,给定固定的检测率,我们的方法比加州理工学院行人基准的现有技术减少了五倍的误报。最后,我们进行了广泛的诊断实验,以揭示系统的哪些方面对于良好的性能至关重要。适当的稳定、长时间尺度特征和适当的归一化都是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Weak Stabilization for Motion Feature Extraction
We describe novel but simple motion features for the problem of detecting objects in video sequences. Previous approaches either compute optical flow or temporal differences on video frame pairs with various assumptions about stabilization. We describe a combined approach that uses coarse-scale flow and fine-scale temporal difference features. Our approach performs weak motion stabilization by factoring out camera motion and coarse object motion while preserving nonrigid motions that serve as useful cues for recognition. We show results for pedestrian detection and human pose estimation in video sequences, achieving state-of-the-art results in both. In particular, given a fixed detection rate our method achieves a five-fold reduction in false positives over prior art on the Caltech Pedestrian benchmark. Finally, we perform extensive diagnostic experiments to reveal what aspects of our system are crucial for good performance. Proper stabilization, long time-scale features, and proper normalization are all critical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信