没有弯曲的变形:明确的例子

Q4 Mathematics
V. Pulov, M. Hadzhilazova, I. Mladenov
{"title":"没有弯曲的变形:明确的例子","authors":"V. Pulov, M. Hadzhilazova, I. Mladenov","doi":"10.7546/giq-20-2019-246-254","DOIUrl":null,"url":null,"abstract":"Here we consider an interesting class of free of bending deformations of thin axial symmetric shells subjected to uniform normal pressure. The meridional kμ and the parallel kπ principal curvatures of the middle surfaces of such shells obey the non-linear relationship kμ = 2ak π + 3kπ , a = const. These non-bending shells depend on two arbitrary parameters, which are the principal radii rμ and rπ of some fixed parallel of the shell. Besides, these surfaces have no closed form description in elementary functions. Our principle aim here is to present such a parameterization of the whole class of non-bending closed surfaces by making use of the canonical forms of the elliptic integrals. The obtained explicit formulas are then applied for the derivation of the basic geometrical characteristics of these surfaces. MSC : 74K25, 74A10, 53A04, 53A05, 33E05","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"84 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deformations Without Bending: Explicit Examples\",\"authors\":\"V. Pulov, M. Hadzhilazova, I. Mladenov\",\"doi\":\"10.7546/giq-20-2019-246-254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we consider an interesting class of free of bending deformations of thin axial symmetric shells subjected to uniform normal pressure. The meridional kμ and the parallel kπ principal curvatures of the middle surfaces of such shells obey the non-linear relationship kμ = 2ak π + 3kπ , a = const. These non-bending shells depend on two arbitrary parameters, which are the principal radii rμ and rπ of some fixed parallel of the shell. Besides, these surfaces have no closed form description in elementary functions. Our principle aim here is to present such a parameterization of the whole class of non-bending closed surfaces by making use of the canonical forms of the elliptic integrals. The obtained explicit formulas are then applied for the derivation of the basic geometrical characteristics of these surfaces. MSC : 74K25, 74A10, 53A04, 53A05, 33E05\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"84 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-20-2019-246-254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-246-254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

这里我们考虑一类有趣的无弯曲变形的薄轴对称壳受到均匀法向压力。这种壳的中间表面的子午线主曲率kμ和平行主曲率kπ服从非线性关系kμ = 2ak π + 3kπ, a = const。这些非弯曲壳依赖于两个任意参数,即壳的固定平行线的主半径rμ和rπ。此外,这些曲面在初等函数中没有封闭形式描述。本文的主要目的是利用椭圆积分的正则形式,给出一类非弯曲闭曲面的参数化。然后应用得到的显式公式推导出这些曲面的基本几何特性。MSC: 74k25, 74a10, 53a04, 53a05, 33e05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformations Without Bending: Explicit Examples
Here we consider an interesting class of free of bending deformations of thin axial symmetric shells subjected to uniform normal pressure. The meridional kμ and the parallel kπ principal curvatures of the middle surfaces of such shells obey the non-linear relationship kμ = 2ak π + 3kπ , a = const. These non-bending shells depend on two arbitrary parameters, which are the principal radii rμ and rπ of some fixed parallel of the shell. Besides, these surfaces have no closed form description in elementary functions. Our principle aim here is to present such a parameterization of the whole class of non-bending closed surfaces by making use of the canonical forms of the elliptic integrals. The obtained explicit formulas are then applied for the derivation of the basic geometrical characteristics of these surfaces. MSC : 74K25, 74A10, 53A04, 53A05, 33E05
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信