{"title":"没有弯曲的变形:明确的例子","authors":"V. Pulov, M. Hadzhilazova, I. Mladenov","doi":"10.7546/giq-20-2019-246-254","DOIUrl":null,"url":null,"abstract":"Here we consider an interesting class of free of bending deformations of thin axial symmetric shells subjected to uniform normal pressure. The meridional kμ and the parallel kπ principal curvatures of the middle surfaces of such shells obey the non-linear relationship kμ = 2ak π + 3kπ , a = const. These non-bending shells depend on two arbitrary parameters, which are the principal radii rμ and rπ of some fixed parallel of the shell. Besides, these surfaces have no closed form description in elementary functions. Our principle aim here is to present such a parameterization of the whole class of non-bending closed surfaces by making use of the canonical forms of the elliptic integrals. The obtained explicit formulas are then applied for the derivation of the basic geometrical characteristics of these surfaces. MSC : 74K25, 74A10, 53A04, 53A05, 33E05","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"84 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deformations Without Bending: Explicit Examples\",\"authors\":\"V. Pulov, M. Hadzhilazova, I. Mladenov\",\"doi\":\"10.7546/giq-20-2019-246-254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we consider an interesting class of free of bending deformations of thin axial symmetric shells subjected to uniform normal pressure. The meridional kμ and the parallel kπ principal curvatures of the middle surfaces of such shells obey the non-linear relationship kμ = 2ak π + 3kπ , a = const. These non-bending shells depend on two arbitrary parameters, which are the principal radii rμ and rπ of some fixed parallel of the shell. Besides, these surfaces have no closed form description in elementary functions. Our principle aim here is to present such a parameterization of the whole class of non-bending closed surfaces by making use of the canonical forms of the elliptic integrals. The obtained explicit formulas are then applied for the derivation of the basic geometrical characteristics of these surfaces. MSC : 74K25, 74A10, 53A04, 53A05, 33E05\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"84 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-20-2019-246-254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-246-254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Here we consider an interesting class of free of bending deformations of thin axial symmetric shells subjected to uniform normal pressure. The meridional kμ and the parallel kπ principal curvatures of the middle surfaces of such shells obey the non-linear relationship kμ = 2ak π + 3kπ , a = const. These non-bending shells depend on two arbitrary parameters, which are the principal radii rμ and rπ of some fixed parallel of the shell. Besides, these surfaces have no closed form description in elementary functions. Our principle aim here is to present such a parameterization of the whole class of non-bending closed surfaces by making use of the canonical forms of the elliptic integrals. The obtained explicit formulas are then applied for the derivation of the basic geometrical characteristics of these surfaces. MSC : 74K25, 74A10, 53A04, 53A05, 33E05