数值积分中矩阵指数近似的相对误差分析

IF 3.8 2区 数学 Q1 MATHEMATICS
S. Maset
{"title":"数值积分中矩阵指数近似的相对误差分析","authors":"S. Maset","doi":"10.1515/jnma-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the relative error in the numerical solution of a linear ordinary differential equation y'(t) = Ay(t), t ≥ 0, where A is a normal matrix. The numerical solution is obtained by using at any step an approximation of the matrix exponential, e.g., a polynomial or a rational approximation. The error of the numerical solution with respect to the exact solution is due to this approximation as well as to a possible perturbation in the initial value. For an unperturbed initial value, we have found: (1) unlike the absolute error, the relative error always grows linearly in time; (2) in the long-time, the contributions to the relative error relevant to non-rightmost eigenvalues of A disappear.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Relative error analysis of matrix exponential approximations for numerical integration\",\"authors\":\"S. Maset\",\"doi\":\"10.1515/jnma-2020-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the relative error in the numerical solution of a linear ordinary differential equation y'(t) = Ay(t), t ≥ 0, where A is a normal matrix. The numerical solution is obtained by using at any step an approximation of the matrix exponential, e.g., a polynomial or a rational approximation. The error of the numerical solution with respect to the exact solution is due to this approximation as well as to a possible perturbation in the initial value. For an unperturbed initial value, we have found: (1) unlike the absolute error, the relative error always grows linearly in time; (2) in the long-time, the contributions to the relative error relevant to non-rightmost eigenvalues of A disappear.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2020-0019\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2020-0019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一类线性常微分方程y'(t) = Ay(t), t≥0,其中a为正矩阵的数值解的相对误差。数值解是通过在任意步上使用矩阵指数的近似值来获得的,例如,多项式近似值或有理近似值。数值解相对于精确解的误差是由于这种近似以及初始值中可能存在的扰动。对于无扰动初值,我们发现:(1)与绝对误差不同,相对误差总是随时间线性增长;(2)在长时间内,与A的非最右特征值相关的相对误差的贡献消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative error analysis of matrix exponential approximations for numerical integration
Abstract In this paper, we study the relative error in the numerical solution of a linear ordinary differential equation y'(t) = Ay(t), t ≥ 0, where A is a normal matrix. The numerical solution is obtained by using at any step an approximation of the matrix exponential, e.g., a polynomial or a rational approximation. The error of the numerical solution with respect to the exact solution is due to this approximation as well as to a possible perturbation in the initial value. For an unperturbed initial value, we have found: (1) unlike the absolute error, the relative error always grows linearly in time; (2) in the long-time, the contributions to the relative error relevant to non-rightmost eigenvalues of A disappear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信