{"title":"数值积分中矩阵指数近似的相对误差分析","authors":"S. Maset","doi":"10.1515/jnma-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the relative error in the numerical solution of a linear ordinary differential equation y'(t) = Ay(t), t ≥ 0, where A is a normal matrix. The numerical solution is obtained by using at any step an approximation of the matrix exponential, e.g., a polynomial or a rational approximation. The error of the numerical solution with respect to the exact solution is due to this approximation as well as to a possible perturbation in the initial value. For an unperturbed initial value, we have found: (1) unlike the absolute error, the relative error always grows linearly in time; (2) in the long-time, the contributions to the relative error relevant to non-rightmost eigenvalues of A disappear.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Relative error analysis of matrix exponential approximations for numerical integration\",\"authors\":\"S. Maset\",\"doi\":\"10.1515/jnma-2020-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the relative error in the numerical solution of a linear ordinary differential equation y'(t) = Ay(t), t ≥ 0, where A is a normal matrix. The numerical solution is obtained by using at any step an approximation of the matrix exponential, e.g., a polynomial or a rational approximation. The error of the numerical solution with respect to the exact solution is due to this approximation as well as to a possible perturbation in the initial value. For an unperturbed initial value, we have found: (1) unlike the absolute error, the relative error always grows linearly in time; (2) in the long-time, the contributions to the relative error relevant to non-rightmost eigenvalues of A disappear.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2020-0019\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2020-0019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Relative error analysis of matrix exponential approximations for numerical integration
Abstract In this paper, we study the relative error in the numerical solution of a linear ordinary differential equation y'(t) = Ay(t), t ≥ 0, where A is a normal matrix. The numerical solution is obtained by using at any step an approximation of the matrix exponential, e.g., a polynomial or a rational approximation. The error of the numerical solution with respect to the exact solution is due to this approximation as well as to a possible perturbation in the initial value. For an unperturbed initial value, we have found: (1) unlike the absolute error, the relative error always grows linearly in time; (2) in the long-time, the contributions to the relative error relevant to non-rightmost eigenvalues of A disappear.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.