关于耦合常数标量曲率Kähler度量

Pub Date : 2019-01-29 DOI:10.4310/jsg.2020.v18.n4.a1
V. Datar, Vamsi Pingali
{"title":"关于耦合常数标量曲率Kähler度量","authors":"V. Datar, Vamsi Pingali","doi":"10.4310/jsg.2020.v18.n4.a1","DOIUrl":null,"url":null,"abstract":"We provide a moment map interpretation for the coupled K\\\"ahler-Einstein equations introduced by Hultgren and Witt Nystr\\\"om, and in the process introduce a more general system of equations, which we call coupled cscK equations. A differentio-geometric formulation of the corresponding Futaki invariant is obtained and a notion of K-polystability is defined for this new system. Finally, motivated by a result of Sz\\'ekelyhidi, we prove that if there is a solution to our equations, then small K-polystable perturbations of the underlying complex structure and polarizations also admit coupled cscK metrics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On coupled constant scalar curvature Kähler metrics\",\"authors\":\"V. Datar, Vamsi Pingali\",\"doi\":\"10.4310/jsg.2020.v18.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a moment map interpretation for the coupled K\\\\\\\"ahler-Einstein equations introduced by Hultgren and Witt Nystr\\\\\\\"om, and in the process introduce a more general system of equations, which we call coupled cscK equations. A differentio-geometric formulation of the corresponding Futaki invariant is obtained and a notion of K-polystability is defined for this new system. Finally, motivated by a result of Sz\\\\'ekelyhidi, we prove that if there is a solution to our equations, then small K-polystable perturbations of the underlying complex structure and polarizations also admit coupled cscK metrics.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2020.v18.n4.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2020.v18.n4.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们对由Hultgren和Witt Nystr\ om引入的耦合K\ ahler-Einstein方程提供了一种矩映射解释,并在此过程中引入了一种更一般的方程组,我们称之为耦合cscK方程。得到了相应的Futaki不变量的微分几何表达式,并定义了该系统的k -多稳定性概念。最后,在Sz\ ekelyhidi结果的激励下,我们证明了如果我们的方程存在解,那么底层复杂结构和极化的小k -多稳态扰动也允许耦合cscK度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On coupled constant scalar curvature Kähler metrics
We provide a moment map interpretation for the coupled K\"ahler-Einstein equations introduced by Hultgren and Witt Nystr\"om, and in the process introduce a more general system of equations, which we call coupled cscK equations. A differentio-geometric formulation of the corresponding Futaki invariant is obtained and a notion of K-polystability is defined for this new system. Finally, motivated by a result of Sz\'ekelyhidi, we prove that if there is a solution to our equations, then small K-polystable perturbations of the underlying complex structure and polarizations also admit coupled cscK metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信