基于MWIR和LWIR编码孔径相机压缩测量的目标跟踪与分类

Q3 Computer Science
C. Kwan, Bryan Chou, Jonathan Yang, Akshay Rangamani, T. Tran, Jack Zhang, R. Etienne-Cummings
{"title":"基于MWIR和LWIR编码孔径相机压缩测量的目标跟踪与分类","authors":"C. Kwan, Bryan Chou, Jonathan Yang, Akshay Rangamani, T. Tran, Jack Zhang, R. Etienne-Cummings","doi":"10.4236/JSIP.2019.103006","DOIUrl":null,"url":null,"abstract":"Pixel-wise Code Exposure (PCE) camera is one type of compressive sensing \ncamera that has low power consumption and high compression ratio. Moreover, \na PCE camera can control individual pixel exposure time that can enable \nhigh dynamic range. Conventional approaches of using PCE camera involve \na time consuming and lossy process to reconstruct the original frames \nand then use those frames for target tracking and classification. In this paper, \nwe present a deep learning approach that directly performs target tracking \nand classification in the compressive measurement domain without any \nframe reconstruction. Our approach has two parts: tracking and classification. \nThe tracking has been done using YOLO (You Only Look Once) and the \nclassification is achieved using Residual Network (ResNet). Extensive experiments \nusing mid-wave infrared (MWIR) and long-wave infrared (LWIR) \nvideos demonstrated the efficacy of our proposed approach.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"231 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Target Tracking and Classification Using Compressive Measurements of MWIR and LWIR Coded Aperture Cameras\",\"authors\":\"C. Kwan, Bryan Chou, Jonathan Yang, Akshay Rangamani, T. Tran, Jack Zhang, R. Etienne-Cummings\",\"doi\":\"10.4236/JSIP.2019.103006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pixel-wise Code Exposure (PCE) camera is one type of compressive sensing \\ncamera that has low power consumption and high compression ratio. Moreover, \\na PCE camera can control individual pixel exposure time that can enable \\nhigh dynamic range. Conventional approaches of using PCE camera involve \\na time consuming and lossy process to reconstruct the original frames \\nand then use those frames for target tracking and classification. In this paper, \\nwe present a deep learning approach that directly performs target tracking \\nand classification in the compressive measurement domain without any \\nframe reconstruction. Our approach has two parts: tracking and classification. \\nThe tracking has been done using YOLO (You Only Look Once) and the \\nclassification is achieved using Residual Network (ResNet). Extensive experiments \\nusing mid-wave infrared (MWIR) and long-wave infrared (LWIR) \\nvideos demonstrated the efficacy of our proposed approach.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"231 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2019.103006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2019.103006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 19

摘要

PCE (Pixel-wise Code Exposure)相机是一种低功耗、高压缩比的压缩感知相机。此外,PCE相机可以控制能够实现高动态范围的单个像素曝光时间。利用PCE相机的传统方法需要对原始帧进行重建,然后利用这些帧进行目标跟踪和分类,这是一个耗时且有损的过程。在本文中,我们提出了一种深度学习方法,该方法直接在压缩测量域中进行目标跟踪和分类,而不需要任何帧重构。我们的方法有两个部分:跟踪和分类。使用YOLO(你只看一次)完成跟踪,使用残余网络(ResNet)实现分类。利用中波红外(MWIR)和长波红外(LWIR)视频进行的大量实验证明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target Tracking and Classification Using Compressive Measurements of MWIR and LWIR Coded Aperture Cameras
Pixel-wise Code Exposure (PCE) camera is one type of compressive sensing camera that has low power consumption and high compression ratio. Moreover, a PCE camera can control individual pixel exposure time that can enable high dynamic range. Conventional approaches of using PCE camera involve a time consuming and lossy process to reconstruct the original frames and then use those frames for target tracking and classification. In this paper, we present a deep learning approach that directly performs target tracking and classification in the compressive measurement domain without any frame reconstruction. Our approach has two parts: tracking and classification. The tracking has been done using YOLO (You Only Look Once) and the classification is achieved using Residual Network (ResNet). Extensive experiments using mid-wave infrared (MWIR) and long-wave infrared (LWIR) videos demonstrated the efficacy of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信