{"title":"大型消息数组中模板文本的识别与聚类","authors":"I.E. Vishnyakov, Igor P. Ivanov, I. Karkin","doi":"10.18698/0236-3933-2022-4-20-35","DOIUrl":null,"url":null,"abstract":"A lot of services are using short messages for various purposes today, for example, stores are sending promotional offers, and EMERCOM of Russia informs population in the event of a threat of natural and technogenic emergencies. Selecting short texts of the template messages from general traffic could be used to filter spam and mailings, as well as to protect users from fraudulent activities. Such arrays of messages are often reaching such a large size that their storage and processing on a single dedicated personal computer or server becomes practically impossible. This work aims at developing approaches to the efficient identification and clustering of the template texts from large arrays of the short messages using the Apache Spark framework for distributed processing of the unstructured data. Main approaches to identifying templates and clustering textual information are considered. Approaches were developed making it possible to cluster in large arrays of messages using distributed computation without preliminary acquisition of the text vector representations. Algorithms are provided for efficient identification of the template messages from large arrays of short texts. Algorithms were compared in terms of performance and quality of pattern identification","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Clustering of Template Texts in the Large Arrays of Messages\",\"authors\":\"I.E. Vishnyakov, Igor P. Ivanov, I. Karkin\",\"doi\":\"10.18698/0236-3933-2022-4-20-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lot of services are using short messages for various purposes today, for example, stores are sending promotional offers, and EMERCOM of Russia informs population in the event of a threat of natural and technogenic emergencies. Selecting short texts of the template messages from general traffic could be used to filter spam and mailings, as well as to protect users from fraudulent activities. Such arrays of messages are often reaching such a large size that their storage and processing on a single dedicated personal computer or server becomes practically impossible. This work aims at developing approaches to the efficient identification and clustering of the template texts from large arrays of the short messages using the Apache Spark framework for distributed processing of the unstructured data. Main approaches to identifying templates and clustering textual information are considered. Approaches were developed making it possible to cluster in large arrays of messages using distributed computation without preliminary acquisition of the text vector representations. Algorithms are provided for efficient identification of the template messages from large arrays of short texts. Algorithms were compared in terms of performance and quality of pattern identification\",\"PeriodicalId\":12961,\"journal\":{\"name\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/0236-3933-2022-4-20-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/0236-3933-2022-4-20-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Identification and Clustering of Template Texts in the Large Arrays of Messages
A lot of services are using short messages for various purposes today, for example, stores are sending promotional offers, and EMERCOM of Russia informs population in the event of a threat of natural and technogenic emergencies. Selecting short texts of the template messages from general traffic could be used to filter spam and mailings, as well as to protect users from fraudulent activities. Such arrays of messages are often reaching such a large size that their storage and processing on a single dedicated personal computer or server becomes practically impossible. This work aims at developing approaches to the efficient identification and clustering of the template texts from large arrays of the short messages using the Apache Spark framework for distributed processing of the unstructured data. Main approaches to identifying templates and clustering textual information are considered. Approaches were developed making it possible to cluster in large arrays of messages using distributed computation without preliminary acquisition of the text vector representations. Algorithms are provided for efficient identification of the template messages from large arrays of short texts. Algorithms were compared in terms of performance and quality of pattern identification
期刊介绍:
The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.