Cloak-Reduce大数据处理性能评价

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Mamadou Diarra, Telesphore B. Tiendrebeogo
{"title":"Cloak-Reduce大数据处理性能评价","authors":"Mamadou Diarra, Telesphore B. Tiendrebeogo","doi":"10.5121/ijdps.2022.13102","DOIUrl":null,"url":null,"abstract":"Big Data has introduced the challenge of storing and processing large volumes of data (text, images, and videos). The success of centralised exploitation of massive data on a node is outdated, leading to the emergence of distributed storage, parallel processing and hybrid distributed storage and parallel processing frameworks. The main objective of this paper is to evaluate the load balancing and task allocation strategy of our hybrid distributed storage and parallel processing framework CLOAK-Reduce. To achieve this goal, we first performed a theoretical approach of the architecture and operation of some DHT-MapReduce. Then, we compared the data collected from their load balancing and task allocation strategy by simulation. Finally, the simulation results show that CLOAK-Reduce C5R5 replication provides better load balancing efficiency, MapReduce job submission with 10% churn or no churn.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Big Data Processing of Cloak-Reduce\",\"authors\":\"Mamadou Diarra, Telesphore B. Tiendrebeogo\",\"doi\":\"10.5121/ijdps.2022.13102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big Data has introduced the challenge of storing and processing large volumes of data (text, images, and videos). The success of centralised exploitation of massive data on a node is outdated, leading to the emergence of distributed storage, parallel processing and hybrid distributed storage and parallel processing frameworks. The main objective of this paper is to evaluate the load balancing and task allocation strategy of our hybrid distributed storage and parallel processing framework CLOAK-Reduce. To achieve this goal, we first performed a theoretical approach of the architecture and operation of some DHT-MapReduce. Then, we compared the data collected from their load balancing and task allocation strategy by simulation. Finally, the simulation results show that CLOAK-Reduce C5R5 replication provides better load balancing efficiency, MapReduce job submission with 10% churn or no churn.\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijdps.2022.13102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijdps.2022.13102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大数据带来了存储和处理大量数据(文本、图像和视频)的挑战。在节点上集中利用海量数据的成功已经过时,导致分布式存储、并行处理和混合分布式存储、并行处理框架的出现。本文的主要目的是评估我们的混合分布式存储和并行处理框架CLOAK-Reduce的负载平衡和任务分配策略。为了实现这一目标,我们首先对一些DHT-MapReduce的架构和操作进行了理论分析。然后,我们通过仿真比较了从它们的负载均衡和任务分配策略中收集的数据。最后,仿真结果表明,CLOAK-Reduce C5R5复制提供了更好的负载均衡效率,MapReduce作业提交的流失率为10%或无流失率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of Big Data Processing of Cloak-Reduce
Big Data has introduced the challenge of storing and processing large volumes of data (text, images, and videos). The success of centralised exploitation of massive data on a node is outdated, leading to the emergence of distributed storage, parallel processing and hybrid distributed storage and parallel processing frameworks. The main objective of this paper is to evaluate the load balancing and task allocation strategy of our hybrid distributed storage and parallel processing framework CLOAK-Reduce. To achieve this goal, we first performed a theoretical approach of the architecture and operation of some DHT-MapReduce. Then, we compared the data collected from their load balancing and task allocation strategy by simulation. Finally, the simulation results show that CLOAK-Reduce C5R5 replication provides better load balancing efficiency, MapReduce job submission with 10% churn or no churn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信