具有响应的RLC电路系统的稳定性和有界性分析

A. Olutimo, I. D. Omoko
{"title":"具有响应的RLC电路系统的稳定性和有界性分析","authors":"A. Olutimo, I. D. Omoko","doi":"10.12732/IJAM.V33I1.4","DOIUrl":null,"url":null,"abstract":"This paper presents a stability and boundedness analysis of a system of RLC circuit modeled using a time varying state-space method. Stability problem analysis is very important in RLC circuits. There is some potential for a response characterizing the system of RLC circuit to approach infinity when subjected to certain types of inputs. Unstable circuit causes damage to electrical systems. Analysis of problems of such system stability is carried out using the Lyapunov’s theory. In this paper, we provide in simple form, conditions which ensure the stability and boundedness of the state variables xi(t) (i = 1, 2) characterizing the system of RLC circuit using Lyapunov’s second or direct method. AMS Subject Classification: 34D40, 34D20, 34D20, 34C25","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"98 1","pages":"39"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"STABILITY AND BOUNDEDNESS ANALYSIS OF A SYSTEM OF RLC CIRCUIT WITH RESPONSE\",\"authors\":\"A. Olutimo, I. D. Omoko\",\"doi\":\"10.12732/IJAM.V33I1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a stability and boundedness analysis of a system of RLC circuit modeled using a time varying state-space method. Stability problem analysis is very important in RLC circuits. There is some potential for a response characterizing the system of RLC circuit to approach infinity when subjected to certain types of inputs. Unstable circuit causes damage to electrical systems. Analysis of problems of such system stability is carried out using the Lyapunov’s theory. In this paper, we provide in simple form, conditions which ensure the stability and boundedness of the state variables xi(t) (i = 1, 2) characterizing the system of RLC circuit using Lyapunov’s second or direct method. AMS Subject Classification: 34D40, 34D20, 34D20, 34C25\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"98 1\",\"pages\":\"39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/IJAM.V33I1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/IJAM.V33I1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文用时变状态空间方法对RLC电路系统进行了稳定性和有界性分析。在RLC电路中,稳定性问题的分析是非常重要的。当受到某些类型的输入时,表征RLC电路系统的响应可能接近无穷大。不稳定的电路会对电气系统造成损坏。利用李亚普诺夫理论对该类系统的稳定性问题进行了分析。本文以简单的形式给出了用李亚普诺夫第二或直接方法表征RLC电路系统的状态变量xi(t) (i = 1,2)的稳定性和有界性的条件。AMS学科分类:34D40、34D20、34D20、34C25
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STABILITY AND BOUNDEDNESS ANALYSIS OF A SYSTEM OF RLC CIRCUIT WITH RESPONSE
This paper presents a stability and boundedness analysis of a system of RLC circuit modeled using a time varying state-space method. Stability problem analysis is very important in RLC circuits. There is some potential for a response characterizing the system of RLC circuit to approach infinity when subjected to certain types of inputs. Unstable circuit causes damage to electrical systems. Analysis of problems of such system stability is carried out using the Lyapunov’s theory. In this paper, we provide in simple form, conditions which ensure the stability and boundedness of the state variables xi(t) (i = 1, 2) characterizing the system of RLC circuit using Lyapunov’s second or direct method. AMS Subject Classification: 34D40, 34D20, 34D20, 34C25
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信