CMOS-MEMS热压阻谐振器在传感器环境压力下的性能评估

Jung-Hao Chang, Cheng-Syun Li, Cheng-Chi Chen, Sheng-Shian Li
{"title":"CMOS-MEMS热压阻谐振器在传感器环境压力下的性能评估","authors":"Jung-Hao Chang, Cheng-Syun Li, Cheng-Chi Chen, Sheng-Shian Li","doi":"10.1109/FCS.2015.7138823","DOIUrl":null,"url":null,"abstract":"In this work, we report a thermally driven and piezoresistively sensed (a.k.a. thermal-piezoresistive) CMOS-MEMS resonator with high quality factor in ambient pressure and with decent power handling capability. The combination of (i) no need of tiny capacitive transducer's gap spacing thanks to thermal-piezoresistive transduction, (ii) the use of high-Q SiO2/polysilicon structural materials from CMOS back-end-of-line (BEOL), and (iii) the bulk-mode resonator design leads to resonator Q more than 2,000 in ambient pressure and 10,000 in vacuum. Key to attaining sheer Q in ambient pressure relies on significant attenuation of the air damping effect through thermal-piezoresistive transduction as compared to conventional capacitive resonators which necessitate tiny transducer's gap for reasonable electromechanical coupling. With such high Q and inherent circuit integration capability, the proposed CMOS-MEMS thermal-piezoresistive resonators can potentially be implemented as high sensitivity mass/gas sensors based on resonant transducers. The resonators with center frequency around 5.1 MHz were fabricated using a standard 0.35 μm 2-poly-4-metal (2P4M) CMOS process, thus featuring low cost, batch production, fast turnaround time, easy prototyping, and MEMS/IC integration.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance evaluation of CMOS-MEMS thermal-piezoresistive resonators in ambient pressure for sensor applications\",\"authors\":\"Jung-Hao Chang, Cheng-Syun Li, Cheng-Chi Chen, Sheng-Shian Li\",\"doi\":\"10.1109/FCS.2015.7138823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we report a thermally driven and piezoresistively sensed (a.k.a. thermal-piezoresistive) CMOS-MEMS resonator with high quality factor in ambient pressure and with decent power handling capability. The combination of (i) no need of tiny capacitive transducer's gap spacing thanks to thermal-piezoresistive transduction, (ii) the use of high-Q SiO2/polysilicon structural materials from CMOS back-end-of-line (BEOL), and (iii) the bulk-mode resonator design leads to resonator Q more than 2,000 in ambient pressure and 10,000 in vacuum. Key to attaining sheer Q in ambient pressure relies on significant attenuation of the air damping effect through thermal-piezoresistive transduction as compared to conventional capacitive resonators which necessitate tiny transducer's gap for reasonable electromechanical coupling. With such high Q and inherent circuit integration capability, the proposed CMOS-MEMS thermal-piezoresistive resonators can potentially be implemented as high sensitivity mass/gas sensors based on resonant transducers. The resonators with center frequency around 5.1 MHz were fabricated using a standard 0.35 μm 2-poly-4-metal (2P4M) CMOS process, thus featuring low cost, batch production, fast turnaround time, easy prototyping, and MEMS/IC integration.\",\"PeriodicalId\":57667,\"journal\":{\"name\":\"时间频率公报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"时间频率公报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2015.7138823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们报告了一个热驱动和压阻感测(又称热压阻)CMOS-MEMS谐振器,在环境压力下具有高质量因数,并且具有良好的功率处理能力。(i)由于热压阻转导,不需要微小的电容式换能器间隙间距,(ii)使用CMOS后端(BEOL)的高Q SiO2/多晶硅结构材料,以及(iii)体模谐振器设计导致谐振器Q在环境压力下超过2000,在真空中超过10,000。与传统电容谐振器相比,在环境压力下获得绝对Q的关键在于通过热压阻转导显著衰减空气阻尼效应,而传统电容谐振器需要微小的换能器间隙来实现合理的机电耦合。由于具有如此高的Q值和固有的电路集成能力,所提出的CMOS-MEMS热压阻谐振器可以作为基于谐振换能器的高灵敏度质量/气体传感器来实现。该谐振器的中心频率约为5.1 MHz,采用标准的0.35 μm 2-聚4-金属(2P4M) CMOS工艺,具有成本低、批量生产、周转时间快、易于原型制作和MEMS/IC集成等特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of CMOS-MEMS thermal-piezoresistive resonators in ambient pressure for sensor applications
In this work, we report a thermally driven and piezoresistively sensed (a.k.a. thermal-piezoresistive) CMOS-MEMS resonator with high quality factor in ambient pressure and with decent power handling capability. The combination of (i) no need of tiny capacitive transducer's gap spacing thanks to thermal-piezoresistive transduction, (ii) the use of high-Q SiO2/polysilicon structural materials from CMOS back-end-of-line (BEOL), and (iii) the bulk-mode resonator design leads to resonator Q more than 2,000 in ambient pressure and 10,000 in vacuum. Key to attaining sheer Q in ambient pressure relies on significant attenuation of the air damping effect through thermal-piezoresistive transduction as compared to conventional capacitive resonators which necessitate tiny transducer's gap for reasonable electromechanical coupling. With such high Q and inherent circuit integration capability, the proposed CMOS-MEMS thermal-piezoresistive resonators can potentially be implemented as high sensitivity mass/gas sensors based on resonant transducers. The resonators with center frequency around 5.1 MHz were fabricated using a standard 0.35 μm 2-poly-4-metal (2P4M) CMOS process, thus featuring low cost, batch production, fast turnaround time, easy prototyping, and MEMS/IC integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信