{"title":"多重斐波那契函数的解析延拓","authors":"S. S. Rout, N. K. Meher","doi":"10.3792/PJAA.94.64","DOIUrl":null,"url":null,"abstract":": In this article, we prove the meromorphic continuation of the multiple Fibonacci zeta functions of depth 2: where F n is the n -th Fibonacci number, Re ð s 1 Þ > 0 and Re ð s 2 Þ > 0 . We compute a complete list of its poles and their residues. We also prove that multiple Fibonacci zeta values at negative integer arguments are rational.","PeriodicalId":49668,"journal":{"name":"Proceedings of the Japan Academy Series A-Mathematical Sciences","volume":"79 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analytic continuation of the multiple Fibonacci zeta functions\",\"authors\":\"S. S. Rout, N. K. Meher\",\"doi\":\"10.3792/PJAA.94.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this article, we prove the meromorphic continuation of the multiple Fibonacci zeta functions of depth 2: where F n is the n -th Fibonacci number, Re ð s 1 Þ > 0 and Re ð s 2 Þ > 0 . We compute a complete list of its poles and their residues. We also prove that multiple Fibonacci zeta values at negative integer arguments are rational.\",\"PeriodicalId\":49668,\"journal\":{\"name\":\"Proceedings of the Japan Academy Series A-Mathematical Sciences\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Japan Academy Series A-Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.94.64\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Japan Academy Series A-Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.94.64","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
摘要
在本文中,我们证明了深度为2的多个Fibonacci zeta函数的亚纯延拓,其中fn是第n个Fibonacci数,Re ð s 1 Þ > 0, Re ð s 2 Þ > 0。我们计算了它的极点及其残数的完整列表。我们也证明了多个Fibonacci zeta值在负整数参数上是有理数。
Analytic continuation of the multiple Fibonacci zeta functions
: In this article, we prove the meromorphic continuation of the multiple Fibonacci zeta functions of depth 2: where F n is the n -th Fibonacci number, Re ð s 1 Þ > 0 and Re ð s 2 Þ > 0 . We compute a complete list of its poles and their residues. We also prove that multiple Fibonacci zeta values at negative integer arguments are rational.
期刊介绍:
The aim of the Proceedings of the Japan Academy, Series A, is the rapid publication of original papers in mathematical sciences. The paper should be written in English or French (preferably in English), and at most 6 pages long when published. A paper that is a résumé or an announcement (i.e. one whose details are to be published elsewhere) can also be submitted.
The paper is published promptly if once communicated by a Member of the Academy at its General Meeting, which is held monthly except in July and in August.