多重斐波那契函数的解析延拓

Pub Date : 2018-06-01 DOI:10.3792/PJAA.94.64
S. S. Rout, N. K. Meher
{"title":"多重斐波那契函数的解析延拓","authors":"S. S. Rout, N. K. Meher","doi":"10.3792/PJAA.94.64","DOIUrl":null,"url":null,"abstract":": In this article, we prove the meromorphic continuation of the multiple Fibonacci zeta functions of depth 2: where F n is the n -th Fibonacci number, Re ð s 1 Þ > 0 and Re ð s 2 Þ > 0 . We compute a complete list of its poles and their residues. We also prove that multiple Fibonacci zeta values at negative integer arguments are rational.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analytic continuation of the multiple Fibonacci zeta functions\",\"authors\":\"S. S. Rout, N. K. Meher\",\"doi\":\"10.3792/PJAA.94.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this article, we prove the meromorphic continuation of the multiple Fibonacci zeta functions of depth 2: where F n is the n -th Fibonacci number, Re ð s 1 Þ > 0 and Re ð s 2 Þ > 0 . We compute a complete list of its poles and their residues. We also prove that multiple Fibonacci zeta values at negative integer arguments are rational.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.94.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.94.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们证明了深度为2的多个Fibonacci zeta函数的亚纯延拓,其中fn是第n个Fibonacci数,Re ð s 1 Þ > 0, Re ð s 2 Þ > 0。我们计算了它的极点及其残数的完整列表。我们也证明了多个Fibonacci zeta值在负整数参数上是有理数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Analytic continuation of the multiple Fibonacci zeta functions
: In this article, we prove the meromorphic continuation of the multiple Fibonacci zeta functions of depth 2: where F n is the n -th Fibonacci number, Re ð s 1 Þ > 0 and Re ð s 2 Þ > 0 . We compute a complete list of its poles and their residues. We also prove that multiple Fibonacci zeta values at negative integer arguments are rational.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信