认知模糊数据的自举方法

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
P. Grzegorzewski, M. Romaniuk
{"title":"认知模糊数据的自举方法","authors":"P. Grzegorzewski, M. Romaniuk","doi":"10.34768/amcs-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract Fuzzy numbers are often used for modeling imprecise perceptions of the real-valued observations. Such epistemic fuzzy data may cause problems in statistical reasoning and data analysis. We propose a universal nonparametric technique, called the epistemic bootstrap, which could be helpful when the existing methods do not work or do not give satisfactory results. Besides the simple epistemic bootstrap, we develop its several refinements that aim to reduce the variance in statistical inference. We also perform an extended simulation study to examine statistical properties of the approaches considered. The discussion of the results is supplemented by some hints for practical use.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"14 1","pages":"285 - 297"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrap Methods for Epistemic Fuzzy Data\",\"authors\":\"P. Grzegorzewski, M. Romaniuk\",\"doi\":\"10.34768/amcs-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fuzzy numbers are often used for modeling imprecise perceptions of the real-valued observations. Such epistemic fuzzy data may cause problems in statistical reasoning and data analysis. We propose a universal nonparametric technique, called the epistemic bootstrap, which could be helpful when the existing methods do not work or do not give satisfactory results. Besides the simple epistemic bootstrap, we develop its several refinements that aim to reduce the variance in statistical inference. We also perform an extended simulation study to examine statistical properties of the approaches considered. The discussion of the results is supplemented by some hints for practical use.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"14 1\",\"pages\":\"285 - 297\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0021\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0021","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

模糊数常用于对实值观测值的不精确感知进行建模。这种认知模糊数据可能会给统计推理和数据分析带来问题。我们提出了一种通用的非参数技术,称为认知bootstrap,它可以在现有方法不起作用或不能给出令人满意的结果时有所帮助。除了简单的认知自举外,我们还对其进行了一些改进,旨在减少统计推断中的方差。我们还进行了扩展的模拟研究,以检查所考虑的方法的统计特性。对结果的讨论还补充了一些实际使用的提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap Methods for Epistemic Fuzzy Data
Abstract Fuzzy numbers are often used for modeling imprecise perceptions of the real-valued observations. Such epistemic fuzzy data may cause problems in statistical reasoning and data analysis. We propose a universal nonparametric technique, called the epistemic bootstrap, which could be helpful when the existing methods do not work or do not give satisfactory results. Besides the simple epistemic bootstrap, we develop its several refinements that aim to reduce the variance in statistical inference. We also perform an extended simulation study to examine statistical properties of the approaches considered. The discussion of the results is supplemented by some hints for practical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信