{"title":"赋范空间中广义三角形不等式表征的另一种方法","authors":"Tamotsu Izumida, Ken-Ichi Mitani, K. Saito","doi":"10.2478/s11533-014-0432-z","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, we consider a generalized triangle inequality of the following type: $$\\left\\| {x_1 + \\cdots + x_n } \\right\\|^p \\leqslant \\frac{{\\left\\| {x_1 } \\right\\|^p }}\n{{\\mu _1 }} + \\cdots + \\frac{{\\left\\| {x_2 } \\right\\|^p }}\n{{\\mu _n }}\\left( {for all x_1 , \\ldots ,x_n \\in X} \\right),$$ where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"115 1","pages":"1615-1623"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Another approach to characterizations of generalized triangle inequalities in normed spaces\",\"authors\":\"Tamotsu Izumida, Ken-Ichi Mitani, K. Saito\",\"doi\":\"10.2478/s11533-014-0432-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this paper, we consider a generalized triangle inequality of the following type: $$\\\\left\\\\| {x_1 + \\\\cdots + x_n } \\\\right\\\\|^p \\\\leqslant \\\\frac{{\\\\left\\\\| {x_1 } \\\\right\\\\|^p }}\\n{{\\\\mu _1 }} + \\\\cdots + \\\\frac{{\\\\left\\\\| {x_2 } \\\\right\\\\|^p }}\\n{{\\\\mu _n }}\\\\left( {for all x_1 , \\\\ldots ,x_n \\\\in X} \\\\right),$$ where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"115 1\",\"pages\":\"1615-1623\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-014-0432-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-014-0432-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Another approach to characterizations of generalized triangle inequalities in normed spaces
AbstractIn this paper, we consider a generalized triangle inequality of the following type: $$\left\| {x_1 + \cdots + x_n } \right\|^p \leqslant \frac{{\left\| {x_1 } \right\|^p }}
{{\mu _1 }} + \cdots + \frac{{\left\| {x_2 } \right\|^p }}
{{\mu _n }}\left( {for all x_1 , \ldots ,x_n \in X} \right),$$ where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].