基于强化学习补偿的倒立摆PD控制

Guillermo Puriel-Gil, Wen Yu, Juan Humberto Sossa Azuela
{"title":"基于强化学习补偿的倒立摆PD控制","authors":"Guillermo Puriel-Gil, Wen Yu, Juan Humberto Sossa Azuela","doi":"10.1109/ICEEE.2018.8533946","DOIUrl":null,"url":null,"abstract":"In this paper, we present a Control Algorithm based on Reinforcement Learning for an inverted pendulum. By implementing the Q-Learning techniques in the PD control scheme, the pendulum is enabled to improve its online performance and adapt to changes in the parameters of the pendulum model. In a first step, Q-Learning is used so that the control can balance the pendulum towards its inverted vertical position; In a second step, we combine hybrid techniques of Q-Learning and PD control. With this combination, we can bring the pendulum to its inverted vertical position, regardless of the applied disturbance. Finally, the results of the simulation show the effectiveness of the proposed controller.","PeriodicalId":6924,"journal":{"name":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reinforcement Learning Compensation based PD Control for Inverted Pendulum\",\"authors\":\"Guillermo Puriel-Gil, Wen Yu, Juan Humberto Sossa Azuela\",\"doi\":\"10.1109/ICEEE.2018.8533946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a Control Algorithm based on Reinforcement Learning for an inverted pendulum. By implementing the Q-Learning techniques in the PD control scheme, the pendulum is enabled to improve its online performance and adapt to changes in the parameters of the pendulum model. In a first step, Q-Learning is used so that the control can balance the pendulum towards its inverted vertical position; In a second step, we combine hybrid techniques of Q-Learning and PD control. With this combination, we can bring the pendulum to its inverted vertical position, regardless of the applied disturbance. Finally, the results of the simulation show the effectiveness of the proposed controller.\",\"PeriodicalId\":6924,\"journal\":{\"name\":\"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2018.8533946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2018.8533946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于强化学习的倒立摆控制算法。通过在PD控制方案中实现Q-Learning技术,使摆摆能够提高其在线性能并适应摆摆模型参数的变化。第一步,使用Q-Learning,使控制能够平衡摆到倒立的垂直位置;在第二步中,我们结合了Q-Learning和PD控制的混合技术。通过这种组合,我们可以使摆摆处于倒立的垂直位置,而不管施加的扰动是什么。最后,仿真结果表明了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning Compensation based PD Control for Inverted Pendulum
In this paper, we present a Control Algorithm based on Reinforcement Learning for an inverted pendulum. By implementing the Q-Learning techniques in the PD control scheme, the pendulum is enabled to improve its online performance and adapt to changes in the parameters of the pendulum model. In a first step, Q-Learning is used so that the control can balance the pendulum towards its inverted vertical position; In a second step, we combine hybrid techniques of Q-Learning and PD control. With this combination, we can bring the pendulum to its inverted vertical position, regardless of the applied disturbance. Finally, the results of the simulation show the effectiveness of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信