{"title":"非紧流形上的奇异全纯莫尔斯不等式","authors":"Dan Coman, G. Marinescu, Hua Wang","doi":"10.59277/rrmpa.2023.61.82","DOIUrl":null,"url":null,"abstract":"We obtain asymptotic estimates of the dimension of cohomology on possibly non-compact complex manifolds for line bundles endowed with Hermitian metrics with algebraic singularities. We give a unified approach to establishing singular holomorphic Morse inequalities for hyperconcave manifolds, pseudoconvex domains, q-convex manifolds and q-concave manifolds, and we generalize related estimates of Berndtsson. We also consider the case of metrics with more general than algebraic singularities.","PeriodicalId":45738,"journal":{"name":"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES","volume":"160 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SINGULAR HOLOMORPHIC MORSE INEQUALITIES ON NON-COMPACT MANIFOLDS\",\"authors\":\"Dan Coman, G. Marinescu, Hua Wang\",\"doi\":\"10.59277/rrmpa.2023.61.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain asymptotic estimates of the dimension of cohomology on possibly non-compact complex manifolds for line bundles endowed with Hermitian metrics with algebraic singularities. We give a unified approach to establishing singular holomorphic Morse inequalities for hyperconcave manifolds, pseudoconvex domains, q-convex manifolds and q-concave manifolds, and we generalize related estimates of Berndtsson. We also consider the case of metrics with more general than algebraic singularities.\",\"PeriodicalId\":45738,\"journal\":{\"name\":\"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59277/rrmpa.2023.61.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59277/rrmpa.2023.61.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
SINGULAR HOLOMORPHIC MORSE INEQUALITIES ON NON-COMPACT MANIFOLDS
We obtain asymptotic estimates of the dimension of cohomology on possibly non-compact complex manifolds for line bundles endowed with Hermitian metrics with algebraic singularities. We give a unified approach to establishing singular holomorphic Morse inequalities for hyperconcave manifolds, pseudoconvex domains, q-convex manifolds and q-concave manifolds, and we generalize related estimates of Berndtsson. We also consider the case of metrics with more general than algebraic singularities.