{"title":"使用处理过的生活污水的罗勒水培系统的生物质生产和精油含量和组成","authors":"L. S. Alves, H. Gheyi, M. G. D. Silva, V. Paz","doi":"10.17584/rcch.2021v15i2.10778","DOIUrl":null,"url":null,"abstract":"Reusing domestic wastewater is an alternative for irrigated agriculture, helping to decrease pressure on good quality water. This study aimed to evaluate the biomass production and essential oil content and composition in the basil genotypes ‘Alfavaca Basilicão’ and ‘Grecco a Palla’ with different plant spacing in hydroponic systems. Two experiments were carried out between March and May (Experiment I) and July and September of 2015 (Experiment II) in a completely randomized design with four replicates in a 2×3 factorial arrangement. In Experiment I, two hydroponic systems (Laminar Nutrient Flow Technique - NFT and Deep Nutrient Flow Technique - DFT) and three plant spacings in hydroponic channels (0.20, 0.30, and 0.40 m) were evaluated. In Experiment II in the DFT hydroponic system, two types of water (tap water and treated domestic effluents) and three nutrient solution recirculation intervals (at intervals of 2, 4, and 6 h) were evaluated. In general, the dry biomass per plant, oil content and oil yield of the two basil genotypes were not influenced by the hydroponic systems, plant spacing, or water type. In Experiment II, the increase between the recirculation intervals (4 or 6 h) negatively affected genotype ‘Grecco a Palla’. Linalool was the major constituent in the essential oil of the two basil genotypes, ranging from 47.00 to 70.10% (Experiment I) and from 59.47 to 63.64% (Experiment II) in genotype ‘Alfavaca Basilicão’; in genotype ‘Grecco a Palla’, it ranged from 10.19 to 43.03% (Experiment I) and from 19.94 to 53.37% (Experiment II).","PeriodicalId":21384,"journal":{"name":"Revista Colombiana de Ciencias Hortícolas","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass production and essential oil content and composition in basil hydroponic systems using treated domestic effluents\",\"authors\":\"L. S. Alves, H. Gheyi, M. G. D. Silva, V. Paz\",\"doi\":\"10.17584/rcch.2021v15i2.10778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reusing domestic wastewater is an alternative for irrigated agriculture, helping to decrease pressure on good quality water. This study aimed to evaluate the biomass production and essential oil content and composition in the basil genotypes ‘Alfavaca Basilicão’ and ‘Grecco a Palla’ with different plant spacing in hydroponic systems. Two experiments were carried out between March and May (Experiment I) and July and September of 2015 (Experiment II) in a completely randomized design with four replicates in a 2×3 factorial arrangement. In Experiment I, two hydroponic systems (Laminar Nutrient Flow Technique - NFT and Deep Nutrient Flow Technique - DFT) and three plant spacings in hydroponic channels (0.20, 0.30, and 0.40 m) were evaluated. In Experiment II in the DFT hydroponic system, two types of water (tap water and treated domestic effluents) and three nutrient solution recirculation intervals (at intervals of 2, 4, and 6 h) were evaluated. In general, the dry biomass per plant, oil content and oil yield of the two basil genotypes were not influenced by the hydroponic systems, plant spacing, or water type. In Experiment II, the increase between the recirculation intervals (4 or 6 h) negatively affected genotype ‘Grecco a Palla’. Linalool was the major constituent in the essential oil of the two basil genotypes, ranging from 47.00 to 70.10% (Experiment I) and from 59.47 to 63.64% (Experiment II) in genotype ‘Alfavaca Basilicão’; in genotype ‘Grecco a Palla’, it ranged from 10.19 to 43.03% (Experiment I) and from 19.94 to 53.37% (Experiment II).\",\"PeriodicalId\":21384,\"journal\":{\"name\":\"Revista Colombiana de Ciencias Hortícolas\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Ciencias Hortícolas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17584/rcch.2021v15i2.10778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Ciencias Hortícolas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17584/rcch.2021v15i2.10778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
家庭污水的再利用是灌溉农业的另一种选择,有助于减少对优质水的压力。研究了不同株距条件下罗勒基因型Alfavaca basilic o和Grecco a Palla的生物量产量和挥发油含量及组成。试验于2015年3月至5月(试验一)和7月至9月(试验二)进行,采用完全随机设计,4个重复,因子排列为2×3。在试验1中,研究了两种水培系统(层流养分流动技术- NFT和深层养分流动技术- DFT)和三种水培通道(0.20,0.30和0.40 m)的植物间距。在DFT水培系统的实验II中,对两种类型的水(自来水和处理后的生活污水)和三种营养液循环间隔(间隔2、4和6 h)进行了评估。总体而言,两种罗勒基因型的单株干生物量、含油量和产量不受水培制度、株距和水分类型的影响。在实验II中,循环间隔(4或6 h)之间的增加对基因型' Grecco a Palla '产生负向影响。两种罗勒基因型精油的主要成分为芳樟醇,分别为47.00 ~ 70.10%(实验1)和59.47 ~ 63.64%(实验2);Grecco a Palla基因型在10.19 ~ 43.03%(实验1)和19.94 ~ 53.37%(实验2)之间变化。
Biomass production and essential oil content and composition in basil hydroponic systems using treated domestic effluents
Reusing domestic wastewater is an alternative for irrigated agriculture, helping to decrease pressure on good quality water. This study aimed to evaluate the biomass production and essential oil content and composition in the basil genotypes ‘Alfavaca Basilicão’ and ‘Grecco a Palla’ with different plant spacing in hydroponic systems. Two experiments were carried out between March and May (Experiment I) and July and September of 2015 (Experiment II) in a completely randomized design with four replicates in a 2×3 factorial arrangement. In Experiment I, two hydroponic systems (Laminar Nutrient Flow Technique - NFT and Deep Nutrient Flow Technique - DFT) and three plant spacings in hydroponic channels (0.20, 0.30, and 0.40 m) were evaluated. In Experiment II in the DFT hydroponic system, two types of water (tap water and treated domestic effluents) and three nutrient solution recirculation intervals (at intervals of 2, 4, and 6 h) were evaluated. In general, the dry biomass per plant, oil content and oil yield of the two basil genotypes were not influenced by the hydroponic systems, plant spacing, or water type. In Experiment II, the increase between the recirculation intervals (4 or 6 h) negatively affected genotype ‘Grecco a Palla’. Linalool was the major constituent in the essential oil of the two basil genotypes, ranging from 47.00 to 70.10% (Experiment I) and from 59.47 to 63.64% (Experiment II) in genotype ‘Alfavaca Basilicão’; in genotype ‘Grecco a Palla’, it ranged from 10.19 to 43.03% (Experiment I) and from 19.94 to 53.37% (Experiment II).