多变量的向量值全纯函数

K. Kruse
{"title":"多变量的向量值全纯函数","authors":"K. Kruse","doi":"10.7169/facm/1861","DOIUrl":null,"url":null,"abstract":"In the present paper we give some explicit proofs for folklore theorems on holomorphic functions in several variables with values in a locally complete locally convex Hausdorff space $E$ over $\\mathbb{C}$. Most of the literature on vector-valued holomorphic functions is either devoted to the case of one variable or to infinitely many variables whereas the case of (finitely many) several variables is only touched or is subject to stronger restrictions on the completeness of $E$ like sequential completeness. The main tool we use is Cauchy's integral formula for derivatives for an $E$-valued holomorphic function in several variables which we derive via Pettis-integration. This allows us to generalise the known integral formula, where usually a Riemann-integral is used, from sequentially complete $E$ to locally complete $E$. Among the classical theorems for holomorphic functions in several variables with values in a locally complete space $E$ we prove are the identity theorem, Liouville's theorem, Riemann's removable singularities theorem and the density of the polynomials in the $E$-valued polydisc algebra.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vector-valued holomorphic functions in several variables\",\"authors\":\"K. Kruse\",\"doi\":\"10.7169/facm/1861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we give some explicit proofs for folklore theorems on holomorphic functions in several variables with values in a locally complete locally convex Hausdorff space $E$ over $\\\\mathbb{C}$. Most of the literature on vector-valued holomorphic functions is either devoted to the case of one variable or to infinitely many variables whereas the case of (finitely many) several variables is only touched or is subject to stronger restrictions on the completeness of $E$ like sequential completeness. The main tool we use is Cauchy's integral formula for derivatives for an $E$-valued holomorphic function in several variables which we derive via Pettis-integration. This allows us to generalise the known integral formula, where usually a Riemann-integral is used, from sequentially complete $E$ to locally complete $E$. Among the classical theorems for holomorphic functions in several variables with values in a locally complete space $E$ we prove are the identity theorem, Liouville's theorem, Riemann's removable singularities theorem and the density of the polynomials in the $E$-valued polydisc algebra.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文给出了局部完全局部凸Hausdorff空间$E$ / $\mathbb{C}$上的若干变量全纯函数的一些民俗定理的显式证明。大多数关于向量值全纯函数的文献都是关于单变量或无穷多变量的情况,而对于(有限多)几个变量的情况则只涉及到或受到类似序列完备性的更强的限制。我们使用的主要工具是柯西积分公式,它是由pettis积分导出的,用于求多变量E值全纯函数的导数。这允许我们推广已知的积分公式,通常使用黎曼积分,从顺序完全$E$到局部完全$E$。我们证明了局部完全空间$E$中值为若干变量的全纯函数的经典定理,包括恒等定理、Liouville定理、Riemann可移动奇点定理和$E$值多盘代数中多项式的密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector-valued holomorphic functions in several variables
In the present paper we give some explicit proofs for folklore theorems on holomorphic functions in several variables with values in a locally complete locally convex Hausdorff space $E$ over $\mathbb{C}$. Most of the literature on vector-valued holomorphic functions is either devoted to the case of one variable or to infinitely many variables whereas the case of (finitely many) several variables is only touched or is subject to stronger restrictions on the completeness of $E$ like sequential completeness. The main tool we use is Cauchy's integral formula for derivatives for an $E$-valued holomorphic function in several variables which we derive via Pettis-integration. This allows us to generalise the known integral formula, where usually a Riemann-integral is used, from sequentially complete $E$ to locally complete $E$. Among the classical theorems for holomorphic functions in several variables with values in a locally complete space $E$ we prove are the identity theorem, Liouville's theorem, Riemann's removable singularities theorem and the density of the polynomials in the $E$-valued polydisc algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信