Guoxin Su, Taolue Chen, Yuan Feng, David S. Rosenblum
{"title":"基于连续时间马尔可夫链的运行时主动性能评估","authors":"Guoxin Su, Taolue Chen, Yuan Feng, David S. Rosenblum","doi":"10.1109/ICSE.2017.51","DOIUrl":null,"url":null,"abstract":"Software systems, especially service-based software systems, need to guarantee runtime performance. If their performance is degraded, some reconfiguration countermeasures should be taken. However, there is usually some latency before the countermeasures take effect. It is thus important not only to monitor the current system status passively but also to predict its future performance proactively. Continuous-time Markov chains (CTMCs) are suitable models to analyze time-bounded performance metrics (e.g., how likely a performance degradation may occur within some future period). One challenge to harness CTMCs is the measurement of model parameters (i.e., transition rates) in CTMCs at runtime. As these parameters may be updated by the system or environment frequently, it is difficult for the model builder to provide precise parameter values. In this paper, we present a framework called ProEva, which extends the conventional technique of time-bounded CTMC model checking by admitting imprecise, interval-valued estimates for transition rates. The core method of ProEva computes asymptotic expressions and bounds for the imprecise model checking output. We also present an evaluation of accuracy and computational overhead for ProEva.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"3 1","pages":"484-495"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"ProEva: Runtime Proactive Performance Evaluation Based on Continuous-Time Markov Chains\",\"authors\":\"Guoxin Su, Taolue Chen, Yuan Feng, David S. Rosenblum\",\"doi\":\"10.1109/ICSE.2017.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software systems, especially service-based software systems, need to guarantee runtime performance. If their performance is degraded, some reconfiguration countermeasures should be taken. However, there is usually some latency before the countermeasures take effect. It is thus important not only to monitor the current system status passively but also to predict its future performance proactively. Continuous-time Markov chains (CTMCs) are suitable models to analyze time-bounded performance metrics (e.g., how likely a performance degradation may occur within some future period). One challenge to harness CTMCs is the measurement of model parameters (i.e., transition rates) in CTMCs at runtime. As these parameters may be updated by the system or environment frequently, it is difficult for the model builder to provide precise parameter values. In this paper, we present a framework called ProEva, which extends the conventional technique of time-bounded CTMC model checking by admitting imprecise, interval-valued estimates for transition rates. The core method of ProEva computes asymptotic expressions and bounds for the imprecise model checking output. We also present an evaluation of accuracy and computational overhead for ProEva.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"3 1\",\"pages\":\"484-495\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ProEva: Runtime Proactive Performance Evaluation Based on Continuous-Time Markov Chains
Software systems, especially service-based software systems, need to guarantee runtime performance. If their performance is degraded, some reconfiguration countermeasures should be taken. However, there is usually some latency before the countermeasures take effect. It is thus important not only to monitor the current system status passively but also to predict its future performance proactively. Continuous-time Markov chains (CTMCs) are suitable models to analyze time-bounded performance metrics (e.g., how likely a performance degradation may occur within some future period). One challenge to harness CTMCs is the measurement of model parameters (i.e., transition rates) in CTMCs at runtime. As these parameters may be updated by the system or environment frequently, it is difficult for the model builder to provide precise parameter values. In this paper, we present a framework called ProEva, which extends the conventional technique of time-bounded CTMC model checking by admitting imprecise, interval-valued estimates for transition rates. The core method of ProEva computes asymptotic expressions and bounds for the imprecise model checking output. We also present an evaluation of accuracy and computational overhead for ProEva.