里德伯原子探测问题与量子信息处理

D. Tretyakov, I. Ryabtsev, I. Beterov, V. Entin
{"title":"里德伯原子探测问题与量子信息处理","authors":"D. Tretyakov, I. Ryabtsev, I. Beterov, V. Entin","doi":"10.1117/12.801914","DOIUrl":null,"url":null,"abstract":"We have developed a simple theoretical model describing multi-atom signals that could be measured in experiments on resonant energy transfers in an ensemble of a few Rydberg atoms. We have shown that an efficiency of the selective field-ionization detector, which is less than 1, leads to the mixing up of the spectra of the resonant energy transfer registered for various numbers of detected Rydberg atoms. This may impede the possible observations of dipole blockade or coherent two-atom interaction required to perform basic quantum gates. The formulae are presented, which help to estimate an actual mean Rydberg atom number in an excitation volume per one exciting laser pulse at a given detection efficiency. We have also found that a measurement of relationship of the amplitudes of resonances observed in the one- and two-atom signals provides a straightforward determination of the absolute detection efficiency and actual mean Rydberg atom number. This novel method is advantageous as it is independent of the specific experimental conditions. We also performed a testing experiment on the resonant energy transfers in a small excitation volume of the velocity selected Na atomic beam. The observed one- and two-atom resonances were analyzed and compared with the theoretical predictions. A good agreement between experiment and theory in the width and amplitudes of the resonances has confirmed the validity of simple approximations used in the developed theoretical model.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Problem of detection of Rydberg atoms and quantum information processing\",\"authors\":\"D. Tretyakov, I. Ryabtsev, I. Beterov, V. Entin\",\"doi\":\"10.1117/12.801914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a simple theoretical model describing multi-atom signals that could be measured in experiments on resonant energy transfers in an ensemble of a few Rydberg atoms. We have shown that an efficiency of the selective field-ionization detector, which is less than 1, leads to the mixing up of the spectra of the resonant energy transfer registered for various numbers of detected Rydberg atoms. This may impede the possible observations of dipole blockade or coherent two-atom interaction required to perform basic quantum gates. The formulae are presented, which help to estimate an actual mean Rydberg atom number in an excitation volume per one exciting laser pulse at a given detection efficiency. We have also found that a measurement of relationship of the amplitudes of resonances observed in the one- and two-atom signals provides a straightforward determination of the absolute detection efficiency and actual mean Rydberg atom number. This novel method is advantageous as it is independent of the specific experimental conditions. We also performed a testing experiment on the resonant energy transfers in a small excitation volume of the velocity selected Na atomic beam. The observed one- and two-atom resonances were analyzed and compared with the theoretical predictions. A good agreement between experiment and theory in the width and amplitudes of the resonances has confirmed the validity of simple approximations used in the developed theoretical model.\",\"PeriodicalId\":90714,\"journal\":{\"name\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.801914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.801914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们已经开发了一个简单的理论模型来描述多原子信号,可以在几个里德伯原子系综的共振能量转移实验中测量。我们已经证明,选择场电离探测器的效率小于1,导致不同数量的里德伯原子所记录的共振能量转移光谱的混合。这可能会阻碍偶极子阻滞或相干两原子相互作用的可能观测,这些观测是执行基本量子门所必需的。给出了在给定探测效率下,每一个激发激光脉冲在激发体积内的实际平均里德伯原子数的计算公式。我们还发现,测量在单原子和双原子信号中观察到的共振振幅的关系,可以直接确定绝对探测效率和实际平均里德伯原子数。这种新方法的优点是它不依赖于特定的实验条件。我们还对速度选择的Na原子束在小激发体积内的共振能量传递进行了测试实验。对观测到的单原子和双原子共振进行了分析,并与理论预测进行了比较。实验和理论在共振宽度和振幅上的良好一致性证实了所建立的理论模型中所使用的简单近似的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problem of detection of Rydberg atoms and quantum information processing
We have developed a simple theoretical model describing multi-atom signals that could be measured in experiments on resonant energy transfers in an ensemble of a few Rydberg atoms. We have shown that an efficiency of the selective field-ionization detector, which is less than 1, leads to the mixing up of the spectra of the resonant energy transfer registered for various numbers of detected Rydberg atoms. This may impede the possible observations of dipole blockade or coherent two-atom interaction required to perform basic quantum gates. The formulae are presented, which help to estimate an actual mean Rydberg atom number in an excitation volume per one exciting laser pulse at a given detection efficiency. We have also found that a measurement of relationship of the amplitudes of resonances observed in the one- and two-atom signals provides a straightforward determination of the absolute detection efficiency and actual mean Rydberg atom number. This novel method is advantageous as it is independent of the specific experimental conditions. We also performed a testing experiment on the resonant energy transfers in a small excitation volume of the velocity selected Na atomic beam. The observed one- and two-atom resonances were analyzed and compared with the theoretical predictions. A good agreement between experiment and theory in the width and amplitudes of the resonances has confirmed the validity of simple approximations used in the developed theoretical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信