{"title":"非局部抛物型Waldenfels算子的极大原理","authors":"Qiao Huang, Jinqiao Duan, Jiang-Lun Wu","doi":"10.1142/S1664360719500152","DOIUrl":null,"url":null,"abstract":"As a class of Lévy type Markov generators, nonlocal Waldenfels operators appear naturally in the context of investigating stochastic dynamics under Lévy fluctuations and constructing Markov processes with boundary conditions (in particular the construction with jumps). This work is devoted to prove the weak and strong maximum principles for ‘parabolic’ equations with nonlocal Waldenfels operators. Applications in stochastic differential equations with [Formula: see text]-stable Lévy processes are presented to illustrate the maximum principles.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum principles for nonlocal parabolic Waldenfels operators\",\"authors\":\"Qiao Huang, Jinqiao Duan, Jiang-Lun Wu\",\"doi\":\"10.1142/S1664360719500152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a class of Lévy type Markov generators, nonlocal Waldenfels operators appear naturally in the context of investigating stochastic dynamics under Lévy fluctuations and constructing Markov processes with boundary conditions (in particular the construction with jumps). This work is devoted to prove the weak and strong maximum principles for ‘parabolic’ equations with nonlocal Waldenfels operators. Applications in stochastic differential equations with [Formula: see text]-stable Lévy processes are presented to illustrate the maximum principles.\",\"PeriodicalId\":9348,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S1664360719500152\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S1664360719500152","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Maximum principles for nonlocal parabolic Waldenfels operators
As a class of Lévy type Markov generators, nonlocal Waldenfels operators appear naturally in the context of investigating stochastic dynamics under Lévy fluctuations and constructing Markov processes with boundary conditions (in particular the construction with jumps). This work is devoted to prove the weak and strong maximum principles for ‘parabolic’ equations with nonlocal Waldenfels operators. Applications in stochastic differential equations with [Formula: see text]-stable Lévy processes are presented to illustrate the maximum principles.
期刊介绍:
The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited.
The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.