广义apostoll - bernoulli、apostoll - euler和apostoll - genocchi多项式的存在与约简

IF 0.5 Q3 MATHEMATICS
L. M. Navas, F. Ruiz, J. Varona
{"title":"广义apostoll - bernoulli、apostoll - euler和apostoll - genocchi多项式的存在与约简","authors":"L. M. Navas, F. Ruiz, J. Varona","doi":"10.5817/am2019-3-157","DOIUrl":null,"url":null,"abstract":"One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \\[ \\Big ( \\frac{2}{\\lambda e^t+1} \\Big )^\\alpha e^{xt} = \\sum _{n=0}^{\\infty } \\mathcal{E}^{(\\alpha )}_{n}(x;\\lambda ) \\frac{t^n}{n!}\\,, \\qquad \\lambda \\in \\mathbb{C}\\setminus \\lbrace -1\\rbrace \\,, \\] and as an “exceptional family” \\[ \\Big ( \\frac{t}{e^t-1} \\Big )^\\alpha e^{xt} = \\sum _{n=0}^{\\infty } \\mathcal{B}^{(\\alpha )}_{n}(x) \\frac{t^n}{n!}\\,, \\] both of these for $\\alpha \\in \\mathbb{C}$.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"55 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials\",\"authors\":\"L. M. Navas, F. Ruiz, J. Varona\",\"doi\":\"10.5817/am2019-3-157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \\\\[ \\\\Big ( \\\\frac{2}{\\\\lambda e^t+1} \\\\Big )^\\\\alpha e^{xt} = \\\\sum _{n=0}^{\\\\infty } \\\\mathcal{E}^{(\\\\alpha )}_{n}(x;\\\\lambda ) \\\\frac{t^n}{n!}\\\\,, \\\\qquad \\\\lambda \\\\in \\\\mathbb{C}\\\\setminus \\\\lbrace -1\\\\rbrace \\\\,, \\\\] and as an “exceptional family” \\\\[ \\\\Big ( \\\\frac{t}{e^t-1} \\\\Big )^\\\\alpha e^{xt} = \\\\sum _{n=0}^{\\\\infty } \\\\mathcal{B}^{(\\\\alpha )}_{n}(x) \\\\frac{t^n}{n!}\\\\,, \\\\] both of these for $\\\\alpha \\\\in \\\\mathbb{C}$.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2019-3-157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2019-3-157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

在数学文献中,我们可以找到许多研究广义apostoll - bernoulli多项式、apostoll - euler多项式和apostoll - genocchi多项式的最新论文,它们是用生成函数来定义的。在本文中,我们澄清了这些定义有效的参数范围,以及当它们提供本质上不同的多项式族时。特别是,我们表明,直到乘法常数,它足以作为“主要族”的那些由\[ \Big ( \frac{2}{\lambda e^t+1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{E}^{(\alpha )}_{n}(x;\lambda ) \frac{t^n}{n!}\,, \qquad \lambda \in \mathbb{C}\setminus \lbrace -1\rbrace \,, \]和作为一个“例外族”\[ \Big ( \frac{t}{e^t-1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{B}^{(\alpha )}_{n}(x) \frac{t^n}{n!}\,, \]这两个为$\alpha \in \mathbb{C}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \[ \Big ( \frac{2}{\lambda e^t+1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{E}^{(\alpha )}_{n}(x;\lambda ) \frac{t^n}{n!}\,, \qquad \lambda \in \mathbb{C}\setminus \lbrace -1\rbrace \,, \] and as an “exceptional family” \[ \Big ( \frac{t}{e^t-1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{B}^{(\alpha )}_{n}(x) \frac{t^n}{n!}\,, \] both of these for $\alpha \in \mathbb{C}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信