细胞周期靶标验证:方法和成功

Peter M. Fischer , Graham Bell , Carol Midgley , Roger Sleigh , David M. Glover
{"title":"细胞周期靶标验证:方法和成功","authors":"Peter M. Fischer ,&nbsp;Graham Bell ,&nbsp;Carol Midgley ,&nbsp;Roger Sleigh ,&nbsp;David M. Glover","doi":"10.1016/S1477-3627(03)02347-X","DOIUrl":null,"url":null,"abstract":"<div><p>Evasion of the checks and balances that govern the human cell division cycle lies at the heart of all proliferative diseases. Because of the astonishing variety of ways that cancer cells manage to achieve growth advantages over normally proliferating cells, it can be expected that pharmacological reinstatement of cell cycle progression control should also be achievable in a multitude of ways. Very few cell cycle targets have so far been exploited for the discovery of mechanism-based anticancer drugs; even fewer targets have yielded actual or experimental clinical drugs. Here, we discuss the approaches that have been and are beginning to be used to identify and validate molecular targets whose pharmacological modulation holds the promise of nongenotoxic and inherently selective cancer therapy. We discuss an approach based on using the genetically amenable organism <em>Drosophila melanogaster</em> as a model for the identification of cell cycle targets, particularly those involved in the processes of mitosis.</p></div>","PeriodicalId":101208,"journal":{"name":"TARGETS","volume":"2 4","pages":"Pages 154-161"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1477-3627(03)02347-X","citationCount":"2","resultStr":"{\"title\":\"Cell cycle target validation: approaches and successes\",\"authors\":\"Peter M. Fischer ,&nbsp;Graham Bell ,&nbsp;Carol Midgley ,&nbsp;Roger Sleigh ,&nbsp;David M. Glover\",\"doi\":\"10.1016/S1477-3627(03)02347-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Evasion of the checks and balances that govern the human cell division cycle lies at the heart of all proliferative diseases. Because of the astonishing variety of ways that cancer cells manage to achieve growth advantages over normally proliferating cells, it can be expected that pharmacological reinstatement of cell cycle progression control should also be achievable in a multitude of ways. Very few cell cycle targets have so far been exploited for the discovery of mechanism-based anticancer drugs; even fewer targets have yielded actual or experimental clinical drugs. Here, we discuss the approaches that have been and are beginning to be used to identify and validate molecular targets whose pharmacological modulation holds the promise of nongenotoxic and inherently selective cancer therapy. We discuss an approach based on using the genetically amenable organism <em>Drosophila melanogaster</em> as a model for the identification of cell cycle targets, particularly those involved in the processes of mitosis.</p></div>\",\"PeriodicalId\":101208,\"journal\":{\"name\":\"TARGETS\",\"volume\":\"2 4\",\"pages\":\"Pages 154-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1477-3627(03)02347-X\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TARGETS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S147736270302347X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TARGETS","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147736270302347X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

逃避控制人类细胞分裂周期的制衡是所有增生性疾病的核心。由于癌细胞比正常增殖的细胞获得生长优势的方式有惊人的多样性,因此可以预期,细胞周期进程控制的药理学恢复也应该可以通过多种方式实现。迄今为止,很少有细胞周期靶点被用于发现基于机制的抗癌药物;甚至更少的目标产生了实际的或实验性的临床药物。在这里,我们讨论了已经和正在开始用于识别和验证分子靶点的方法,这些靶点的药理调节有望实现非基因毒性和固有选择性的癌症治疗。我们讨论了一种基于使用遗传上可适应的生物黑腹果蝇作为识别细胞周期靶点的模型的方法,特别是那些参与有丝分裂过程的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell cycle target validation: approaches and successes

Evasion of the checks and balances that govern the human cell division cycle lies at the heart of all proliferative diseases. Because of the astonishing variety of ways that cancer cells manage to achieve growth advantages over normally proliferating cells, it can be expected that pharmacological reinstatement of cell cycle progression control should also be achievable in a multitude of ways. Very few cell cycle targets have so far been exploited for the discovery of mechanism-based anticancer drugs; even fewer targets have yielded actual or experimental clinical drugs. Here, we discuss the approaches that have been and are beginning to be used to identify and validate molecular targets whose pharmacological modulation holds the promise of nongenotoxic and inherently selective cancer therapy. We discuss an approach based on using the genetically amenable organism Drosophila melanogaster as a model for the identification of cell cycle targets, particularly those involved in the processes of mitosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信