最小凸分区和最大空多边形

IF 0.4 Q4 MATHEMATICS
A. Dumitrescu, Sariel Har-Peled, Csaba D. Tóth
{"title":"最小凸分区和最大空多边形","authors":"A. Dumitrescu, Sariel Har-Peled, Csaba D. Tóth","doi":"10.20382/jocg.v5i1a5","DOIUrl":null,"url":null,"abstract":"Let  S  be a set of  n  points in  R d . A Steiner convex partition is a tiling of conv( S ) with empty convex bodies. For every integer  d , we show that  S  admits a Steiner convex partition with at most ⌈( n -1)/ d ⌉ tiles. This bound is the best possible for points in general position in the plane, and it is the best possible apart from constant factors in every fixed dimension  d ≥3. We also give the first constant-factor approximation algorithm for computing a minimum Steiner convex partition of a planar point set in general position. Establishing a tight lower bound for the maximum volume of a tile in a Steiner convex partition of any  n  points in the unit cube is equivalent to a famous problem of Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/ n ). Here we give a (1-\\epsilon)-approximation algorithm for computing the maximum volume of an empty convex body amidst  n  given points in the  d -dimensional unit box [0,1] d .","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"100 1","pages":"213-224"},"PeriodicalIF":0.4000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Minimum Convex Partitions and Maximum Empty Polytopes\",\"authors\":\"A. Dumitrescu, Sariel Har-Peled, Csaba D. Tóth\",\"doi\":\"10.20382/jocg.v5i1a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let  S  be a set of  n  points in  R d . A Steiner convex partition is a tiling of conv( S ) with empty convex bodies. For every integer  d , we show that  S  admits a Steiner convex partition with at most ⌈( n -1)/ d ⌉ tiles. This bound is the best possible for points in general position in the plane, and it is the best possible apart from constant factors in every fixed dimension  d ≥3. We also give the first constant-factor approximation algorithm for computing a minimum Steiner convex partition of a planar point set in general position. Establishing a tight lower bound for the maximum volume of a tile in a Steiner convex partition of any  n  points in the unit cube is equivalent to a famous problem of Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/ n ). Here we give a (1-\\\\epsilon)-approximation algorithm for computing the maximum volume of an empty convex body amidst  n  given points in the  d -dimensional unit box [0,1] d .\",\"PeriodicalId\":43044,\"journal\":{\"name\":\"Journal of Computational Geometry\",\"volume\":\"100 1\",\"pages\":\"213-224\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v5i1a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v5i1a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

设S是R d中n个点的集合。Steiner凸分割是由具有空凸体的conv(S)进行的平铺。对于每一个整数d,我们证明S允许一个最多有≤≤(n -1)/ d²块的Steiner凸分割。该界是平面上一般位置点的最佳可能界,并且是除固定维度d≥3的常数因子外的最佳可能界。给出了计算平面点集在一般位置上的最小Steiner凸划分的第一个常因子近似算法。在单位立方体中任意n个点的Steiner凸划分中,建立瓦片最大体积的紧下界等价于Danzer和Rogers的一个著名问题。推测最大瓦片的体积为ω(1/ n)。在这里,我们给出了一个(1-\epsilon)-近似算法,用于计算d维单位盒[0,1]d中n个给定点中的空凸体的最大体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum Convex Partitions and Maximum Empty Polytopes
Let  S  be a set of  n  points in  R d . A Steiner convex partition is a tiling of conv( S ) with empty convex bodies. For every integer  d , we show that  S  admits a Steiner convex partition with at most ⌈( n -1)/ d ⌉ tiles. This bound is the best possible for points in general position in the plane, and it is the best possible apart from constant factors in every fixed dimension  d ≥3. We also give the first constant-factor approximation algorithm for computing a minimum Steiner convex partition of a planar point set in general position. Establishing a tight lower bound for the maximum volume of a tile in a Steiner convex partition of any  n  points in the unit cube is equivalent to a famous problem of Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/ n ). Here we give a (1-\epsilon)-approximation algorithm for computing the maximum volume of an empty convex body amidst  n  given points in the  d -dimensional unit box [0,1] d .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信